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ABSTRACT

The probability distribution of a model prediction is presented as a proper basis for evaluating the uncertainty
in a model prediction that arises from uncertainty in input values. Determination of important model inputs
and subsets of inputs is made through comparison of the prediction distribution with conditional prediction
probability distributions. Replicated Latin hypercube sampling and variance ratios are used in estimation of the
distributions and in construction of importance indicators. The assumption of a linear relation between model
output and inputs is not necessary for the indicators to be effective. A sequential methodology which includes
an independent validation step is applied in two analysis applications to select subsets of input variables which
are the dominant causes of uncertainty in the model predictions. Comparison with results from methods which
assume linearity shows how those methods may fail. Finally, suggestions for treating structural uncertainty for
submodels are presented.
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EXECUTIVE SUMMARY

The importance of evaluating uncertainty in model
predictions is well known to the Nuclear Regulatory
Commission (NRC), as evidenced in the assessment
of severe accident risks for five U.S. nuclear power
plants in their NUREG-1150 report. Because of the
need of NRC to quantify and understand uncertainty in
model predictions, they have been and continue to be a
driving force behind, for example, the use of simulation
methods and Latin hypercube sampling (LHS) to estimate
prediction probability distributions. Evaluation of the
importance of inputs with respect to prediction uncertainty
has been done, by and large, through regression-based
methods including regression and correlation coefficients.
Although regression-based methods have served well in
providing importance indicators in many applications,
they rely on linearity assumptions as the basis for their
effectiveness. Breakdown of the assumptions can result
in both failure to detect important inputs as well as false
detections. Moreover, independent validation has been
mostly overlooked as a means to confirm input selections
and to provide estimates of the true effect of important
inputs. These concerns constitute the motivation behind
the present work to provide a sound theoretical basis
together with effective methodologies for evaluating
prediction uncertainty.

Vulnerable points in commonly used methodologies are
addressed in three ways. First, the report shows that
input importance can derive directly from the prediction
probability distribution without reliance on specific
assumptions such as linearity to relate model inputs and

accident consequence analysis code called MACCS.
Prediction uncertainty in three outputs arising from input
uncertainty in 36 inputs is evaluated. This model runs
very much slower than the first, and so abbreviated subset
selection is employed. In both applications, sequential
subset selection using variance ratios successfully identifies
all important inputs. Thus, using the applications, the
report illustrates analysis methods that can be applied to
a wide variety of models.

The value of validation exercises to confirm input selection
and quantify prediction uncertainty is illustrated in the
analysis applications. Also illustrated through validation
are the effects of important inputs which were undetected
using partial rank correlation in the MACCS analysis.

The use of variance as an indicator of importance derives
from a simple theoretical development of uncertainty using
probability distributions. However, the idea that variance
relates to importance is not new and, in fact, can be shown
to underlie regression-based methods. Except for the cost
of reliable estimation of variance in terms of the number
of computer runs required—which can be significantly
more than that required for estimation of partial correlation
and regression coefficients—variance would be generally
preferred over regression-based indicators in evaluation
of prediction uncertainty. Fortunately, desktop computing
makes variance estimation feasible in many applications.

Variance-based methods are made practical through

output. The report shows how regression-based methods development of a special LHS plan and heuristic

can fail when such assumptions are invalid. Second,
several types of variance ratios and sequential variable
selection are shown to be reasonable and effective for
identifying important inputs without dependence on
linearity assumptions. Third, the value of validation to
confirm input selections and to provide estimates of the
true effect of important inputs is demonstrated in two
analysis applications.

The methodology is shown to be effective in analysis
applications for two very different models. In the first
application—chosen because of the speed of model
calculations—the flow of material in an ecosystem is
described by a system of partial differential equations
with 84 input parameters. Because the model is very
fast running, subsets of inputs can be studied in detail.

procedures for selecting important inputs. The idea of
the correlation ratio is extended to the partial correlation
ratio, paralleling the partial correlation coefficient in
linear models. The sequential procedures discussed in the
analysis applications provide more complete pictures than
are usually found of how different input combinations
relate to prediction uncertainty.

Finally, the report addresses the topic of uncertainty

in model predictions due to plausible alternative model
structures—structural uncertainty. There is uncertainty in
almost all model predictions because of approximate or
incomplete treatment of the phenomenology of the process
being modeled. For the most part, however, general
treatment of structural uncertainty is virtually impossible
owing to the conceptually large (possibly infinite) number

The second application involves the nuclear power station of alternative models. The report presents a formal

Xi
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basis for analysis and methods for analysis of structural

uncertainty in submodel calculations.

In summary, practical methods for evaluating prediction

uncertainty and a sound theoretical basis for them are

NUREG/CR-6311
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presented. The methodology provides an effective
description of the effects of input uncertainty that is more
complete and defensible than those provided by commonly
used regression-based techniques. Methods are illustrated
in analysis applications.
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1

Evaluation of prediction uncertainty in a computer model
means the estimation of the variability in model prediction
due to uncertainty in input values and the determination
of the contribution to the variability from dominant model
inputs. When the mathematical form of a model makes
analytical determinations impossible, simulation methods
which include statistical estimation are used. Any of
several sampling methods, like simple random sampling
or Latin hypercube sampling (LHS), are suitable for
estimation of prediction uncertainty. For the second
part of evaluation, namely, identification of dominant
inputs and their contribution to prediction uncertainty,
regression methods are frequently employed. The most
commonly used indicator statistics are correlation and
partial correlation coefficients and regression coefficients,
with and without the rank transformation. It is well known

INTRODUCTION

The methodology for uncertainty analysis of computer
codes described in this report builds upon an earlier
research project of the author sponsored by the United
States Nuclear Regulatory Commission (NRC) and upon
other extensive literature. The first research project began
in 1975 when computer speed and costs severely limited
the application of statistical analysis to reactor safety
codes. Typically, the number of computer runs in an
analysis would be no more than 20 and might require
several weeks to complete at the nighttime computer
charge rate. To accurately quantify the “error” or
uncertainty in code calculations related to 15 to 30 input
parameters seemed almost impossible. In this setting,
LHS was developed by McKay, Conover, and Beckman
(1979). It allowed successful assessment of sensitivity
using partial rank correlation (McKay, Conover, and

that statistics such as these derive their effectiveness fromWhiteman, 1976) and, with the same set of computer runs,

an assumed linear, or monotonic, relationship between
model input variables and calculated prediction. Under
that assumption, the variance of the model prediction is
linear in input variances, and so the indicators properly
attribute contributions of variability to different input
variables. However, as the actual relation between
inputs and prediction becomes less linear, the ability of
regression indicators to function as intended diminishes
to the point where they can fail completely to identify
important inputs.

In order to development a cogent methodology for
evaluating prediction uncertainty, this report begins with
the probability distribution of a model prediction as a
proper basis for evaluating the uncertainty. From that
starting point, determination of important model inputs
and subsets of inputs is seen to arise from comparison
of the prediction distribution with conditional prediction
probability distributions. From the many ways to compare
probability distributions, a practical and intuitive one is

through variances. The effectiveness of general variance-

based indicators of importance does not depend on
assumptions about the form of the relationship between
inputs and prediction—in this sense, the indicators are

nonparametric. It is not suggested that use of regression-

based indicators should be discontinued; regression and
correlation have served well and will continue to be
necessary parts of analytical practices for long-running
computer models. However, reliance on these indicators
should be reduced in favor of nonparametric methods
when the nonparametric methods are practical.

a reasonable measure of uncertainty (“error bands”) with
the tolerance interval (McKay and Bolstad, 1981).

The current project, begun in 1992, revisits the problem
almost 12 years later, in a new computing setting where
the desktop workstation can provide hundreds to thousands
of runs a day. The effect of this new computing power is
that what had been impossible—reasonable and effective
description of model prediction uncertainty via probability
distributions—is now a reality. Thus, current goals of
analysis have expanded: they are higher, broader, and
more optimistic than they were in the 1970s. Nevertheless,
the fundamental objective remains the same: to quantify
uncertainty in model predictions arising from uncertainty
in input values and to identify principal contributors
from among the model input variables and component
submodels.

1.1 Overview

A mathematical modein(-) is a construction by which

an output or predictiory is determined from a set of
inputsz. Prediction uncertainty refers to the variability in
prediction due to plausible alternative input values. The
uncertainty about appropriate input values described by
probability distributions propagates through the model to
form a probability distribution for model prediction. The
model prediction distribution provides the description of
prediction uncertainty that is the object of investigation
in this report.

NUREG/CR-6311



1. Introduction

Another source of uncertainty arises in almost all 1.2 Audience

predictive or forecast models from their approximate or

incomplete treatment of the phenomenology of the processThe audience for this report is seen as consisting of two
being modeled. This source of uncertainty is termed  groups of people. Foremost, there are the technical people
structural or model uncertainty. A general characterization \who build and test models and who must assess both
of structural uncertainty is much more difficult than one  adequacy and credibility of model prediction. Techniques
for input uncertainty. The notion of plausible alternative  of uncertainty analysis presented in this report can provide
model structures is much larger than that of just alternative them with valid characterizations and descriptions of
input values. It can include, for example, all continuous  prediction uncertainty and input importance to use in
functions of an infinite number of input variables. Except their assessments. Moreover, the understanding of the
for restricted classes of plausible alternative model extent of prediction uncertainty in model calculations is
structures (for example, when consideration is only expected to contribute to their technical evaluations of
among several competing models) the general treatment models. It is assumed that model builders and the people
of structural uncertainty is virtually infeasible. Structural who perform uncertainty analyses have a background in
uncertainty is certainly of great importance. However,  mathematics and statistics.

for the general case—the one usually encountered in

reactor safety applications—practical methods for' analysis The other group of people in the audience for this report
have yet to be developed. Therefore, the prediction  consists of decision-makers who use uncertainty analyses
uncertainty discussed in this report, but for one exception, i their work. It is hoped that the material presented will
is that due to input uncertainty for an arbitrary but illuminate the methods used in the uncertainty analyses
specified model structure. The exception is for submodel g5 that both strengths and limitations can be better
uncertainty. Under some circumstances, the effect of  nqerstood. Without doubt, the subject and methods of
structural uncertainty of a submodel calculation might be ncertainty analysis are mathematical. Nevertheless, the
evaluated relative to the effect of input uncertainty. mathematical details of estimation of importance indicators
can be passed over without loss to understanding.

The application driving this work is the prediction
of consequences from serious nuclear power reactor ~ From whatever background, however, the reader is
accidents. The input variables used in calculations in ~ a@ssumed to be familiar with basic elements of probability
the computer codes describe initial conditions, release theory, including the concepts of random variable,
of radioactive material to the environment, transport of ~Probability density function, and dependence of random
the material through the environment and the material’s Variables.
effects on people. The code—the model—developed
from current understandings of physical processes through ) ) )
laws of physics and empirically derived associations, 1.3 Direction Taken in the Report
transforms input values into model predictions. At the
focus of uncertainty analysis is the unknown difference  Various statistical procedures are used in evaluation of
between the model prediction and the outcome of an  prediction uncertainty. Many of those used to identify
accident. important model inputs are borrowed, by and large,
from regression analysis. Some others are based more
. o ) generally on variance decomposition. As a background,
The difference .between model pred|ct|on.and truth IS the report presents a summary of these methods and
seldom known in the absolute sense outside of validation yeterences several good comparative studies. Interestingly,
tests. Nevertheless, knowledge of the variability in theoretical justification of many methods is strained, even
pred|ct|on'as input values change or different submodels \;nen empirical studies indicate that they perform well.
are used is valuable to people who develop models and The need for a general and acceptable foundation for
to those who use model predictions in the decision-  mathods development and justification is apparent. To
making process. It is the goal of this report to present  ihis end, the report examines modeling uncertainty in
methods and procedures for uncertainty analysis which o apstract to develop a general notion of importance
will accurately de;:crlbe var|ab|I|t.y in model prethtlon of inputs as being related to differences in probability
and the contribution to that variability from various distributions. Importance indicators formed from variance
(subsets of) inputs. ratios then arise naturally from prediction variance, which

NUREG/CR-6311 2



1. Introduction

is one manner through which the probability distributions completed, procedures for performing uncertainty analyses
might be compared. Statistical estimation of a variety  are outlined and carried out on two sample applications.
of variance components used in importance indicators  Finally, there is a short discussion of submodel uncertainty.
is then presented. With the theoretical development
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2 BACKGROUND DEVELOPMENT

Many statistical methods and practices can be collected 2.1.2 Global

under overlapping and sometimes indistinguishable

umbrellas of model analyses variously called sensitivity From a global perspective, interest lies in the event
analysis, sensitivity testing, error analysis, propagation of exceeding (or not exceeding) specified values. Questions
error, uncertainty analysis, and the like. From these are that arise in this case are concerned with associating
many that can be interpreted as foreshadowing or actually particular inputs or segments of ranges of inputs with the
composing analysis of prediction uncertainty. This section event. Objectives of study might be related to controlling
reviews some of the methods from the point of view the event or to reducing its probability of occurrence in

of analysis of prediction uncertainty. Apologetically, the real world by adjusting the values of some of the
discussion of many applications of the wealth of methods inputs. If costs are associated with the inputs, minimum
from the past are omitted for the sake of brevity. cost solutions might be sought.

. Clearly, both perspectives have a place in model analysis.
2.1 Two Perspectives for In the local perspective, interest inis restricted to a
performing Analyses (small) neighborhood of a single point, and the derivative

comes into play. In the global perspective, interest is

Two perspectives are used in model analysis (McKay, in values ofy, which might translate into a subset of,
1978 and 1988). One perspective focuses at points in theOF POssibly just a boundary in, the input space. In this
space of input values, like a nominal or base case, and C€ase, the role of the derivative is less clear. What tends
is termed local relative to the input space. Historically, {0 blend the two perspectives is the use of the derivative
analysis from the local perspective has been called to answer questions of a global nature. The practice is
sensitivity analysis. The other perspective is from the ~ @Ppropriate in small enough neighborhoods where the
space of output values or predictions. As such, its focus model is essentially linear, meaning that the derivative
is not constrained a priori in the input space, and so it does not change substantially with; or that, to first-

is termed global relative to the input space. It is from a order approximation, an “average” derivative is sufficient

global perspective that uncertainty analysis usually arises. {0 characterize the model, again meaning that the model
is essentially linear.

2.1.1 Local

From a local perspective, there is an input vakyeof 2.2 Prediction Uncertalnty from

interest, for which knowledge of changes in the prediction & Global Perspective

y from small perturbations in inputs aboutz, is

desired. A common question in this situation concerns Prediction uncertainty from a global perspective is different
propagation of error, characterized by the derivatives of from uncertainty from a local perspective. Globally, the

y with respect to the components of Objectives for probability distribution of the predictioy contains all
study can be finding the direction, not necessarily parallel information about uncertainty without reference to input
to a coordinate axis, in which changes most rapidly values. The distribution function can be estimated from a
or finding the change iy for an arbitrary direction. simple random sample of model runs. However, LHS is
Issues like these lead to the concept of “critical” or often a preferred alternative to simple random sampling
“important” variables (or directions) as being ones which (see McKay, Conover, and Beckman, 1979, and Stein,
most account for change in For linear propagation 1987). For both sampling methods, sampling error is a
of error, individual components of are described as concern for small sample sizes.

important or not. When the direction for change is
arbitrary, meaning not necessarily along coordinate axes, Global uncertainty can arise from a local perspective by
subsets of the inputs which define direction, rather than way of the relationship betweenand z, often assumed

individual inputs, become the issue. Typical of local linear and to hold over the entire input space. In this
analyses are one-at-a-time variational studies about the case, the characterization of uncertainty is usually through
nominal input value. the variance of the prediction rather than through the

5 NUREG/CR-6311



2. Background Development

whole probability distribution. How well the linearity assumption about the linear dependencey ain x.
assumption holds determines how well global uncertainty However, it is generally unknown whether the value of
is characterized in this way. the actual derivative of at # = p, or the value of an

average slope is preferred in the variance approximation.
In a technique that could be related to linear propagation
2.3 Partitioning Prediction Uncertainty of error, Wong and Rabitz (1991) look at the principal
components of the partial derivative matrix.
Statements like “20% of the uncertainty inis due
to z;” presupposes a quantitative measure and can be Correlation coefficients have been used to indicate relative
very misleading, depending on how well the probability importance of the inputs. They are mentioned here

distribution of y is summarized by the measure. An because they are closely related to linear regression
example of a more precise statement is “On average, the coefficients. In a similar way, rank-transformed values
variance ofy is 20% less whem; is fixed than when it of y andz have been used for rank correlation and rank
is free; average is with respect to the distributionzef’ regression by McKay, Conover, and Whiteman (1976)

Variance is the natural but by no means unique candidate and Iman, Helton, and Campbell (1981a, 1981b).
for a scalar measure of uncertainty.

Various methods address in one way or another the 2.3.2 General Analytical Approximation

issue of partitioning or decomposing variance among

inputs and subsets of inputs. Several studies compare The natural extension of linear propagation of error, to
and evaluate methods currently used in the analysis of add more terms in the Taylor series, makes it difficult
computer models. Some of them are Saltelli, Andres, and t0 interpret variance decomposition component-wise for
Homma (1993), Saltelli and Homma (1992), Saltelli and «. That is, the introduction of cross-product terms brings

Marivoet (1990), Iman and Helton (1988), and Downing, Cross-moments into the variance approximation, which
Gardner, and Hoffman (1985). makes the approximation no longer separable with respect

to the inputs. Nevertheless, higher-order terms in variance
approximation may be necessary because of an obvious
lack of fit from the linear approximation. The adequacy
of the approximation tg might be used as a guide to the
adequacy of the variance approximation.

2.3.1 Linear Propagation of Error

When variance of;, V[y], is the measure of uncertainty,
the problem of partitioning uncertainty reduces to that of
finding suitable decompositions for the varianceyofThe
simplest of these is the usual propagation-of-error method
in which y is expressed as a Taylor series in the inputs
x about some point,. To first-order approximation, the
variance ofy is expressed as a linear combination of the
variances of the components ofby choosingz, to be

iz, the mean value of.

Similarly, the linear approximation of used in the
regression can be generalized to an arbitrary analytical
approximation from which, in theory, the varianceyodan

be derived either mathematically or through simulation.
Alternatively, there is a method proposed by Sacks, Welch,
Mitchell, and Wynn (1989) which looks at the model as

a realization of a stochastic process. The difficulties in

Ay(pia) interpretation and assessing adequacy just mentioned for
y(r) = y(pe) + Z Oz (2 — o) the higher-order Taylor series expansion apply here, too.
V= 3 (M) viag i
u=2 D, ;i 2.3.3 Sampling Methods

This final category of partitioning techniques relies on a
Derivatives might be determined numerically. Alterna-  sample (usually, some type of random sample) of values
tively, Oblow (1978) and Oblow, Pin, and Wright (1986) of ¥ whose variability can be partitioned according to the
use a technigue whereby the capability of calculating inputs without an apparent assumed functional relation
derivatives is added into the (Fortran) model calculation betweeny and z. In the category is a Fourier method
using a precompiler called GRESS. When the derivatives of Cukier, Levine, and Shuler (1978). Their procedure
of y are estimated by the coefficients from a linear samples values of each componentzofn a periodic
regression ofy on z, there seems to be a stronger fashion, with different periods for each component. The
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variability (sum of squares) of the resulting valuesyaf
written as a sum of terms corresponding to the different

periods and thus associated with the different components.

It is unclear how this relates to linear propagation of
error, but it may be just another way to estimate the
same quantities. The original Fourier method applies
to continuous inputs; it is extended to binary variables
by Pierce and Cukier (1981). Again, the relation to
linear propagation of error is unclear. Another procedure
suggested by Morris (1991) examines a probability
distribution of the partial derivatives of the output arising
from particular sampling designs.

Partition of variance in the multivariate analysis sense

is becoming more important as an analytical tool. A
most interesting partition of variance is presented by Cox
(1982) from Baybutt and Kurth (1978) and is similar to

a partition discussed by Karlin and Rinott (1982). It is
given in Appendix A.1. Though not actually a sampling
method, the elements of the decomposition are likely to be
estimated from sampled data. The identity used involves
the variances of conditional expectations of the output
given subsets of the inputs. Iman and Hora (1990) use
the expansion in its simplest form for a single input with
an explicit polynomial approximation to the conditional
mean. Saltelli, Andres, and Homma (1993) discuss a
more general situation which relates to Krzykacz (1990)
who uses the correlation ratio without an explicit form for
the conditional mean. These ideas are discussed in detail
in subsequent sections of this report. It is noted that, in
general, it is not possible to construct a unique variance
decomposition in which individual inputs are represented
by single terms, one for each input.

2.4 Cautions

There are three important points about the methods just
presented. First, uncertainty is only fully described by
a probability distribution. Thus, while variance is often
an effective characterization of the uncertainty, it can
contain very limited information when the distribution

is not symmetric with a long, heavy tail or when it is
multimodal. Moreover, variance rarely characterizes
the probability distribution uniquely. The second point,
closely connected to the first, is that many methods
identify individual inputs as important using variance
under a linear approximation model. There are very
few complete variance decompositions—for example, the
Cox decomposition—which do not rely on some form

2. Background Development

of approximate relation betweenand«. In particular,
when linearity assumptions are invalid, ordinarily powerful
methods based on them can break down. The final caution,
which applies to all statistical procedures, concerns the part
sampling variation plays in estimation. Different samples
can produce very different estimates for the methods
described. Thus, some type of independent validation

of conclusions is prudent. The methods presented
subsequently in this report address these cautions:
differences in appropriate probability distributions are
examined; methods apply to nonlinear models with

only very weak assumptions; validation is employed for
confirmation of conclusions.

2.5 Model Testing

Model testing is a term applied to a variety of procedures
intended to evaluate and build credibility in a model's
predictions. Although model testing logically precedes a
final uncertainty study to evaluate prediction uncertainty,
several aspects of it can be combined efficiently with a
preliminary uncertainty analysis.

There are several main parts of model testing for any
specific modeling application. It is expected that iteration
among them will be necessary to achieve a reliable model.
The parts are

verification — determination of consistency between
implementation of the model in a computer code and
its conceptual or mathematical description

calibration — determination of appropriate val-
ues of intrinsic model parameters that describe
phenomenology

shakedown testing — examination of model
predictions for a wide range of input values

validation — comparison between model predictions
and experimental or observational data

Model runs from a preliminary uncertainty study can be
used in conjunction with the last two points of shakedown
testing and validation. Simple visual displays of the data
generated for an uncertainty study can provide a wealth
of information because of the dispersion of input values
in LHS. (See, for example, Ford, Moore, and McKay,
1979, and McKay, 1988.) In any event, a fully tested and
validated model is necessary before prediction uncertainty
due to input uncertainty can be evaluated sensibly.
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3 MODELING UNCERTAINTY

Modeling uncertainty refers to the variability in model
predictions due to plausible alternative input values
(input uncertainty) and plausible alternative model
structures (structural uncertainty). In this section, simple
characterizations for input and structural uncertainty are
proposed which allow formal description of uncertainty
by probability distributions. It is pointed out that while
structural and input uncertainty look very similar formally,
structural uncertainty is fundamentally more difficult to
evaluate in practice.

Modeling Uncertainty refers to the variability in mode|
predictions due to plausible alternative input values
(input uncertainty) or to plausible alternative model
structures (structural uncertainty).

Following McKay (1993), models are mathematical
abstractions, in the form of computer codes, used to
predict outcomes of real events. One way to picture
how outcomes arise in reality is depicted in Figure 3.1.
Hypothetical descriptor variablesdetermine an outcome
0 by their value and a rul&. The existence of descriptor
variables is hypothetical; it is not critical to assume
that a finite number of such variables actually exist and
absolutely determingd. The outcome? might be a simple
scalar or a vector, possibly of infinite dimension, discrete
or continuous. It might be only partially observable

or observable with error. The outconfemight be a
stochastic process governed by some componentsaafi
specified byE. The rule R is unknown; formally, it maps
descriptor variableg into outcomed.

Conceptual descriptor variables Outcomes - target, truth

. >
D R:d 0

d : conceptual descriptor variablesec D
R(%):
6 = R(d) : target, outcome in reality

reality’s rule or “law”

Figure 3.1 View of reality

The modeling process mirrors reality with input variables,
structural form, and values of inputs by which the model

Output calculation -
prediction

Input
values

Model
structures

z : model inputspx € V

) : model structure, rule, algorithm, etc.
) : model output calculation, prediction

Figure 3.2 Model of reality

output prediction is calculated. The modeling process is
depicted in Figure 3.2.

Model predictions are often built upon idealizations and
simplifications. They are calculated from presumed values
for inputs with postulated relationships. In the upper part
of Figure 3.2, a modeh(-) from M is a map of the model
input spaceV into the model prediction space. Model
input spaceé’ and that of conceptual descriptot3, need

not coincide, as is the case, for example, when all relevant
factors have not been identified. Specification of factors
as model inputs is considered part of the model structure.
In Figure 3.1, there is only one mag, which is reality’s
unknown rule. Because of structural uncertainty, the
possibility of alternative model structures is allowed in
the spaceV! of model structures. Looking at the situation
from another angle in the lower part of Figure 3.2, a
point z in the input space maps the space of models

into the prediction space. That is, for a specification of
a situation throughe, a range of possible predictions is
spanned by varyingn(-).

The term “model” is often used as if referring to a
family of functions. Thus, a function might be thought
of as a specific instance of a model.
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3. Modeling Uncertainty

Basic modeling elements are

z . inputs,z € V
m(-) : structure, rule, algorithm, etc.
y =m(x) : output calculation, prediction
¢ : target of prediction

The model outpuy is a prediction of an unknown outcome

¢ and depends on both inputsand model structurez(-).

The prediction error for a simple, scalar prediction is the
differencey — 6. The two sources of prediction error

are input values and model structure. These sources of
error, or uncertainty, can be characterized formally in a
probabilistic sense. Before doing so, however, an analogy
is drawn from statistical analysis.

For fixed model structuren(-), prediction errory — ¢
follows from input uncertainty and comprises a component
of precision (variance) and one of accuracy (bias) when
is treated as a random variable due to input uncertainty.
The usual mean square error of prediction is

E [(y - 9)2] =£ [(y - uyﬂ +(py = 0)°

=Vl + (ny — 0)", (3-1)

wherey,, = E[y| is the mean value of. The first term of
the right-hand side of Equation 3-1 is the varianceyof

it is a measure of prediction uncertainty call@ediction
variance The second term on the right (bias squared)
involves# and, usually, cannot be evaluated. It measures
the closeness of the average model predictignto ¢ and

is a measure of accuracy. In any particular application,
the expectation is with regard to input uncertainty for

a fixed model.

There are really two fundamental sources of uncertainty
in model prediction and the modeling process: (1)
model structure—which identifies specific input variables
and relationships among them—and (2) values of the
inputs that specifically define modeled events. It may
be important but impossible to consider both sources
of uncertainty for a complete description of prediction
uncertainty.

3.1 Input Uncertainty

Historically, model analysis has dealt almost exclusively
with the input uncertainty component of modeling
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uncertainty. Input uncertainty refers to plausible
alternative input values, as described in Figure 3.3.
Corresponding prediction uncertainty, which depends
on the modeln(-), is indicated by the shaded area of
variation in the prediction space associated with the
shaded area of variation around in the input specBlo
implications about the map, like continuity, are intended
in the figure. By assumption, there is a probability
function on the input space, represented by the density
function f,, which is mapped tof, on the prediction
space. The probability distributiofi. characterizes input
uncertainty. The modefh(-) can influence the choice of
f=. Therefore, the characterization of input uncertainty
is the triple (f.,V, m(")).

Output calculation -
prediction

Input
values

B

Model
structures

m(-): model structure
V' space of plausible input values,c V/
e
Iy

probability function onV’
probability function fory induced by(f,., V, m(-))

Figure 3.3 Characterization of prediction
uncertainty from input uncertainty

Input Uncertainty refers to plausible alternative inp
values.

The evaluation of prediction uncertainty arising from
input uncertainty concerns the determination or estimation
of the range of variation of;, the estimation of the
probability functionf, (or some of its moments), and
some kind of determination of the “contribution” of
various subsets of input variables fp. The evaluation

of prediction uncertainty can be carried out using ordinary
simulation methods.



3.2 Structural Uncertainty

The description of structural uncertainty parallels that of
input uncertainty. Structural uncertainty refers to plausible
alternative model structures, as described in Figure 3.4.
The shaded area i/ represents a “range” of alternative
models which, for fixed input value, induces the shaded
neighborhood in prediction space. As before, the figure
is not meant to suggest any particular properties, like
continuity. Formally, there is a probability distribution on
M represented by the density functigrn which induces

a probability distribution ory indicated by the density
gy. This density represents the prediction uncertainty
and depends or. The characterization of structural
uncertainty is the tripldg,,, M, ).

\%

Output calculation -
prediction

Input
values

Model
structures

z: input value

. space of plausible models; € M

. probability function onM

: probability function fory induced by(g,,, M, z)

Figure 3.4 Characterization of prediction
uncertainty from structural uncertainty
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3. Modeling Uncertainty

Structural Uncertainty refers to plausible alternativie
model structures.

The evaluation of prediction uncertainty arising from
structural uncertainty concerns the determination or
estimation of the range, or space, of variabilityyoaind

the estimation of the probability functiog,. At this

point the parallel between input uncertainty and structural
uncertainty breaks down because of the difficulty of
quantifying and sampling the space of models, A
situation that is workable, however, is one whéie
consists of (finitely many) identified structures. This case
is called one of competing models. It can be investigated
in obvious ways, some of which are suggested by the
discussion of submodel uncertainty in Section 10.

Another possibility involves representing models as
realizations of stochastic processes. It has been used by
Sacks, Welch, Mitchell, and Wynn (1989) and others

for the purpose of designing computer experiments.
Following their work, A/ would be a space of random
functions, a superpopulation, whose parameters might be
estimated from the model(s) at hand.

The formal definition ofg, as defining uncertainty in

y is of little value without a basis for the probability
distribution ¢,,, on the space of models. Finding and
¢m constitutes the fundamental problem of structural
uncertainty. For a decision-maker who must confront
a situation involving structural uncertainty, Bayesian
methods using subjective or degree-of-belief probability
distributions (e.g., Apostolakis, 1990 and 1993) are
available. However, application of Bayesian methods does
not remove the difficulties of constructing fundamental
probability distributions.
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4 PREDICTION UNCERTAINTY

Prediction uncertainty describes the variability in the
predictiony associated with input uncertainty. The
important aspect of variability associated with structural
uncertainty is not included because there are no general
practical methods for treating it. In this section,
fundamental ideas about uncertainty and importance
are discussed with respect to the prediction probability
distribution f,,. The concept of importance is related to
differences among conditional probability distributions
and prediction distribution. In Section 5, the variance
of f, is investigated as a summary f@y to be used in
evaluation of prediction uncertainty. Ideas of importance
from conditional probability distributions carry over to
the use of variance.

Prediction Uncertainty refers to the variability iny
associated with input uncertainty and is characterized
by the prediction probability distributiorf,. The
model structurem(-) is assumed known and fixed
which is the usual case, and so the probability distri-
bution is conditioned onn(-).

4.1 Prediction Probability Distribution

The probability distribution of the prediction is
represented by a probability density functigi.
(For discretey, f, is the usual probability function.)
Conceptually, the density, derives from the input
uncertainty triple

(fm; V; m()) )
where

z~ f,forzeV
y=m(z).

The density functionf,, represents the probability
distribution of the inputs: conditioned on the model

Theoretically, prediction uncertainty is completely
described byf,, the prediction probability distribution.
Figure 4.1 depicts a density functigf) describing the
probabilistic variability iny due to inputse that vary over
V according tof,,. Becausef, completely characterizes

13

uncertainty iny, it cannot be discarded in final evaluations.
However, in practical situations simple measures that are
easy to use are needed. This is particularly true for when
making model comparisons for different scenarios. Two
widely used options are entropy and variance. Entropy,
which plays a dominant role in information theory, is
defined by

1 = ~E(log(f,)

Although possibilities for using entropy in uncertainty
studies are very interesting, they are not yet well
developed. A limited discussion is presented in Appendix
A.2. The other option for summarizing uncertainty is the
variance off,. This measure, dominant in the field of
statistics, is investigated in Section 5.

Figure 4.1 Prediction probability
distribution £, when all inputs vary

4.2 Importance for Prediction
Uncertainty

Importance is a subjective and, hence, vague term.
Operational definitions related to derivatives and regression
coefficients, including partial correlation coefficients,

may not be appropriate when dealing with prediction
uncertainty. For studying prediction uncertainty, a
convenient notion of importance relates to the “degree of
dependence” between model predictiprand an input

or subset of inputs. In the limiting case whereand an
input are statistically independent, it is easy to understand
that the input is not at all important: its value implies
nothing about the value agf. At the other extreme, the
value of an input could determine absolutely the value
of y; that is, conditioned on the input, the value ipfs

fixed with probability 1. The input would be completely
important. Somewhere in between these two limits is
everything of practical interest.
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4. Prediction Uncertainty

For a general application model, the possibility that inputs The arguments of the density functions have been made

individually are not particularly important needs to be

explicit. The equation clearly shows the relation between

considered. That is to say, no single input may have any f, and the densities in the famil&fym}. Intuitively, that

particular impact ory, but collectively, a large enough
subset of inputs will be important. Thus, the importance

Sy IS important means that the uncertaintyzrchanges
with the valuess,.. That is to say, that the densities in

of a subset of inputs might depend more on the size of the the family {fym} differ in some substantial way among

subset than on its composition. Therefore, an important

themselves. On the other hand, that is unimportant

premise taken here is that importance of an input subset means that the fixed valug has small effect oy, which

increases, or at least does not decrease, with the size
of the subset.

The importance of input subsets includes importance
of a single input. Let the inputs be partitioned into
disjoint subsets.

r=5,US"

The importance of the subsgt relates to the difference
between f,—the distribution ofy when all inputs
vary—and the family of conditional densitigsf; . }
indexed ons,. and describing the variability af when the
subsets,. is fixed at different values,.. As an example,
Figure 4.2 suggests hog, might reduce the variance in
y for one of the densities if f, ;. }.

y y

Figure 4.2 Unconditional f, and conditional
Jy1s. When some of the inputs are fixed

Figure 4.2 illustrates ideas of importance and local
uncertainty: when the subsgf of inputs is fixed at the
value s,,, it is the remaining inputs it which cause
uncertainty iny. This local or conditional uncertainty

is described by the conditional probability distribution
Jy1s.- The uncertainty is induced by the conditional input
distribution f, .|, ., which takes into account the possibility
that the inputs may not be statistically independentS,If
and S; are independent, then

fs§:|sz = fs; .
Prediction uncertainty is described in terms of local
uncertainty for any subset of inputs,. That is, the
marginal (unconditional) density af can be written as
the average of conditional densities.

fy () = / Fyon (] 5o (50)dse  (4-1)
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means that densities in the familyf,|,. } are very similar

among themselves. In the limiting case, is completely

unimportantwheny and .S, are statistically independent.
In this extreme case, the distribution gfconditioned on

S, is constant, namely,

Jyls. = fy forall s, .

Thus, a base line for comparing the family of densities
{f,s. } is the densityf,. Equation 4-1 shows that when
the family { f,|,, } are similar among themselves and

all approach a constant function, that constant function
is f,. Likewise, when they are more dissimilar among
themselves, they are dissimilar . The validation
procedure discussed later in the report examines families
of densities{ f,,. } and{f, ;- } and the density, .

Importance for Prediction Uncertainty refers to de-
gree of statistical dependence between input and |pre-
diction and to differences within the family of condi-
tional probability distributions f, ;. }. The average
value of the probability distributions in the family
the prediction probability distributiorf, .

"

4.3 Stochastic Variability

Prediction uncertainty relates to input uncertainty.
However, there is another common type of variability,
sometimes called stochastic uncertainty, which arises in
connection with some modeling methods. For a stochastic
model, the object of prediction is a random variable whose
“stochastic variability” in nature is modeled as a random
process. The behavior of the roll of dice or that of wind
speed and direction at a weather station are examples
of stochastic variability. Although reality and prediction
can be summarized with histograms, means, and standard
deviations, any particular output is random. Models of
random processes like these are called stochastic process
models or probabilistic models.

A complete and error-free specification of a stochastic
(probabilistic) model can only provide predictions that



4. Prediction Uncertainty

are accurate in the statistical sense, for example, of beingmany times. When sampling error is significant with
able to predict average behavior. For situations involving respect to input uncertainty, both types of variability need
stochastic variability, it is convenient to view accuracy to be taken into account in an uncertainty analysis. In the
of prediction as referring to accuracy of the probability  remainder of this report, it is assumed that the probability
distribution from the model which describes the stochastic distribution of stochastic outcome has been estimated,
behavior of the actual outcome. In order to obtain an  essentially, without error. Other treatments of stochastic
adequate estimate of the probability distribution of the  models are left to further research efforts.

stochastic outcome, a stochastic model must be sampled
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5 PREDICTION VARIANCE AND

In this section, prediction variance is presented as a
simple measure of prediction uncertainty. The ideas are
fundamental to the evaluation of prediction uncertainty and

IMPORTANCE INDICATORS

5.2.1 Variance of the Conditional
Expectation (VCE) of Prediction

importance through prediction variance. In a development The two terms on the right in Equation 5-1 have an

that parallels the general notions of prediction uncertainty

interpretation as to the importance of the input subset

importance previously discussed, variance is regarded as 5 The first of them is the variance of the conditional

an attribute of and proxy for the prediction distributifn

5.1 Prediction Variance

The mean value and variance of a probability distribution
are fundamental attributes commonly used as a proxy

for the full distribution, even though it is only in special

cases, like that of the normal distribution, that the mean
and variance uniquely identify the distribution. The mean
and variance often contain enough information to suffice
for analysis. Prediction mean and variance are given by

E(y) = /yfy (y)dy = py

and
Viyl = E(y — py)’

I/(y — 1) fy (y)dly .

Investigation of importance with respect to prediction
varianceV[y] follows.

5.2 Importance for Prediction Variance

For an arbitrary partition of the inputs into disjoint
subsetss, andS, the (prediction) variance of calculated
from the left and right sides of Equation 4—1 produces the
familiar result (see Parzen, 1962)

Viy =VIE(y | S:)]+ EVIy | S:]), (5-1)
where

VIEW |51 = [ (e = )" Fo (o),

E(V]y| S,

)
//(y — tyts) Fytsn (W) fo (52 )dyds,

and
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expectation ofy, conditioned onS,.. It is denoted by
VCE or
VCE(S,)=VI[E(y | S, = s.)] - (5-2)

The second term is an error or residual term written as

ResidualS;; Sz) = E(V[y | S;]) . (5-3)
Thus, the prediction variance is
V]y] = VCE(S,)+ ResidualS;; S.) . (5-4)

The conditional expectation of, also denoted by, _,

is a function ofs,, the conditioning value of the inputs
in subsetS,;. The VCE measures the variability in the
conditional expected value @f as the inputs inS, take
on different valuess,. The residual term represents
the variability iny not accounted for (explained by) the
input subsets,..

(In the notation for conditional expectation and variance,
the notations “| S,” and “ | S, s;" are used
interchangeably to mean that the operation is conditioned
on the subsef5, having an arbitrary but fixed value

denoted by the lowercase symbgql.)

An informal argument that the VCE is a suitable measure
for importance of the subset, follows. It looks at the
constituent parts in Equation 54 to reveal the way in
which they relate ta5,, and the rest of the inputS;.

*  The total variability iny when all of the inputs vary
is measured by the prediction varian€¢y], the left
side of Equation 5-4.

* When an arbitrary subsef, is fixed ats,, the
expected prediction is given by conditional expected
value ofy, E(y|S; =sy). It represents the
prediction ats, averaged over values of all of the
other inputsS;. The importance ofS; relates to
how well S, drives or controlsy, that is, how
well E(y | Sz = sy) mimics y. In particular, if the
total variability in y is matched by the variability
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in E(y | S, = s,) ass, varies, thenS, would be
a very important input subset. That variability is
measured bW [E(y | S; = s;)], which is the VCE
and the first term on the right in Equation 5-4.

When S, is fixed at the value,,, the remaining or

They explain its use in describing nonlinear relationships
as a parallel to that of the usual correlation coefficient

p for linear relationships. A disincentive to its use in
the past may have been the sample size required for
adequate estimation of the VCE. The author had used an

approximate estimator from LHS in early research efforts,
but abandoned it due to imprecision in estimation. The
same method is described by Krzykacz (1990) where
the estimate is called the “empirical correlation ratio.”
Iman and Hora (1990) used’[E(y | «; )])1/2 for single
inputs.S; = z; in analysis of fault trees assuming a linear
polynomial approximation for the conditional expectation
of y. In Section 6, a new sampling plan for estimating
correlation ratios is presented.

residual variability iny is due to all of the other
inputs—S;, is fixed and.S: varies. The residual
variability is the variability not controlled by,.. It is
measured by the conditional variané¢y | S, = s.].
The quantity is a measure of local variability at
s, due toS?, and is averaged ovex, to yield its
averageZ (V]y | S; = sz]), which is the second term
on the right in Equation 5-4.

Equations 5-1 and 54 hold for continuous and discrete
prediction variableg). They also hold when the subsets
Sy and S? are statistically dependent. When inputs
are dependent, a large VCE f6F, might be more due

to the conditional distribution ob? changing withs,

than with the computational effect ¢f, being fixed.

This consideration points out the need to understand
“importance” as it relates to the degree of statistical
dependence of inputs and prediction.

5.2.3 Partial VCE (PVCE)

The VCE and correlation ratio can be used as indication
of importance of any specified subsets of inputs, including
each input alone. It might be thought that to determine
the composition of the important subsgt, all that would

be needed would be to assess each input separately using
the VCE. Such a one-at-a-time approach, however, is not
recommended because it is hot necessarily an optimal or
In summary, the VCE is an intuitively appealing choice of even good subset selection procedure. If,fanputs in

an importance indicator. Equations 5-1 and 5-4 show that s, , there were a unique partition of the VCE of the form
for any arbitrary subset of inputs, prediction variance can
be written as the sum of a global component (VCE) and
a local component (residual), from which therrelation
ratiO, discussed belOW, arises as a natural indicator of where thev7 are nonnegative and Correspond 0n|y to input
importance. No assumptions are made about the form of nymberi, then selection of important input subsets would
the relationship betweep andz, as is the case for usual  depend only on the relative sizes of the Unfortunately,
analysis of variance models and other regression models. there is no such unique partition, meaning that the relative
However, convenient variance partitions which result  importance of inputs is not well defined. This situation is
from linear (approximation) models are not available. In  similar to that in linear regression analysis where there is
Section 6, discussion of estimation procedures shows the no unique partition of regression sums of Squares_except
relationship between the variance components used with when thez-values are orthogonal. Therefore, it is
importance indicators and traditional analySiS of variance necessary to look further for a procedure for selection of
for random effects models. subsets of important inputs.

VCE:U1 —|—U2+"'+Up,

5.2.2 Correlation Ratio In regression analysis, partial regression coefficients and
partial sums of squares are used to select regression
The constituents of the variance decomposition of Equation models. A similar procedure can be used for selecting
5-4 are the VCE and the residual part due to the remainingimportant subsets of inputs in a model-free situation using
inputs S¢. The magnitude of VCE relative to prediction  variance components and the VCE. However, just as in
variance in Equation 5-5 is called the correlation ratio by regression, the order of variable selection will be seen
Kendall and Stuart (1979). to be material. The remainder of this section describes

the procedure.
7= VIE(y | S))/VIy] P

= VCE(S:)/V[y] (5-5) The heuristic sequential approach to assessing importance

of inputs, finds “best” subsets gfinputs forj = 1,2,3
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and so forth up to the smallest value for which all

of the prediction variance is essentially accounted for.
Proceeding sequentially, the subsgtis augmented by
one input variable, although it also can be (and, in practice,
often is) augmented by a subset. The resulting VCE with
an additional input is related to the initial VCE; ).

The VCE for the augmented subset
Sy ={z", 5},

derived in Appendix A.3, is the sum of the VCE {6},
and an additional term for*. The new VCE is

VCE(S) = VIE(y | 57)]
VCE(S:) + E(V[E(y | 57) | 5:]) - (5-6)

The additional term is found by applying Equation 5-1
to the subsef{z*} for each fixed value (at each site)
of S; = s,. At each site, the prediction variance is
conditioned onS,, and given by

Vig | 5:1=VIE(y | 57) | 5]

+ E(WVIy | 57115 (5-7)

Equation 5-7 parallels Equation 5-1 at each Site= s,
and shows how importance of the additional inptit
beyond that of the subset of inputs is evaluated
locally with the conditional VCE as a function ef..

A global measure is obtained by taking expectation
(averaging) Equation 5-7 ovéf,, from which the last
term corresponding te* in Equation 5-6 can be derived.
The expectation of Equation 5-7 with respectStpis

E(WVy | 5:]) = E(VIE(Y [ {5, «"}) | Sk])

+EEWVTy [{Se, 27 }] [ 5)) (5-8)

which shows that Equation 5-1 can be written as

Viyl =VI[E(y | S»)]
+ E(V[E(y | {z",5:}) | S:])
+E(E(Vy | {z*,5:}]1S:), (5-9)

where the residual variance term is replaced by a term
representing the additional variable (subsetland a new
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residual term. The term far* is called the partial VCE
or PVCE forz* adjusted forS,, and is given by

PVCHz";.5,) = E(V[E(y [{z",5:}) | S:]) - (5-10)

In terms of the VCE and the PVCE, the prediction
variance in Equation 5-9 is

V[yl = VCE(S.)+ PVCHz";S,)
+ Residuals;*; S;) ,

x xr

(5-11)

where
VCE({z",S,}) = VCE(S,)+ PVCH=z";S,).

The representation forms the basis for the sequential
construction of important subsets because the VCE for
{%, S, } is as least as large as the VCE f§y alone. That
is, for two input subset$ and.S*,

S C S§* — VCE(S) < VCE(S*).

This property is allows VCE to be used to construct subsets
of important inputs sequentially, in a nested fashion.

5.2.4 Partial and Incremental
Partial Correlation Ratios

The PVCE forz* measures the amount of residual
variance not explained by, that can be attributed to the
additional inputz*. Relating the PVCE to the residual
variance in Equations 5-1 and 5-3, yields the partial
correlation ratio

= EVIEQY [ {S:, & D | S:D/E(VIy | 9:])
= PVCH«";S,)/Residuals®; S,).  (5-12)

This ratio is an indicator of the (average) importance of
z* when S, is fixed. If the PVCE is compared with the
full prediction variance, the incremental partial correlation
ratio is formed as

Mne = EVIEQY [{Se, 2" 1) | S:])/V]y]

PVCH=z";5,)/V[y] , (5-13)

which measures the importance of the beyond (or
adjusted for) that of the subsét..
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5. Prediction Variance and Importance Indicators

The difference between VQE*) and PVCEz*; S, ) interpretation should be weighted by the distributjon of
underlies the reason that the order is material in variable S,. In ordinary regression, for exampl&(y | S, = s,.)
selection for identification of important inputs. This is modeled as a function of,, and the importance of

phenomenon means that the importance of an input by 5, is evaluated. Often, however, in ordinary regression
itself may be—and often is—different from its importance analysis, the points are equally weighted. In the present
in concert with other inputs. Not only is it reasonable  situation, this corresponds to inputs having independent
that this should be the case, but the phenomenon can be uniform probability distributions. The weighting is seen
exploited when finding minimum-size or minimum-cost  in the calculation of the (global) expected valueyohs
subsets to reduce prediction uncertainty.

B = [ B@)] S = b (s)dse, (6-14)
5.2.5 Conditional Correlation Ratio
which is the weighted average of the (local) conditional
At each siteS, = s,, prediction variance, VCE, and expectations.
correlation can be computed for inpuist in the subset
S,. These quantities are called conditional, conditioned The conditional variance of
on S, = s,, and defined from Equations 5-7 and 5-5 in
the ObVIOLIJS manner. C_ondmonal VCE and conditionél Vy | s0] = / (y(x) B /’Ly|sx(r)>2feg|sx(5:;)d5;
are local indicators of importance.

can be used in a similar way as a diagnostic aid in
5.3 Conditional Moments model testing.

and Model Testing
5.4 Beyond Regression Methods

The moments in Equation 5-1 are integrals with respect

to y which can be written also in the form Variance-based methods for assessing importance can be
B seen to be generalizations of regression-based methods by
E(y) =y virtue of the treatment of the conditional expectatioryof
_ /yf (y)dy as a function of the conditioning variable Regression
Y methods use an assumed form of the relationship, often
o linear. Variance methods operate without any such
= [ y(@)fo(z)dz S i -
ption. For example, in linear regression the

conditional expectation of is assumed to be a linear

and function of z, which can be written as
E(y|5»r:5m):ﬂylsz o
I/yfmsz(y)dy Ey|z)=xp
_ €N gt for a row vectorx and column vector. Under the
- y(x)fsﬂsz(sx)dsx . . . . .
linearity assumption, the VCE is given by

as integrals over the input space. The integrals suggest

that estimators of the conditional mean VCE(z) = V[E(y | )] = 8'V[x]5,

E(y| S, = s,) for which the unknown pgramete&are estimated from _
the sample data. For variance-based methods, the VCE is
and the conditional variance estimated from sample data without regard to any specific
relationship for the conditional expectation. In this sense,
Viy | Sy = s.] variance methods are model-free or nonparametric.

be used as diagnostic aids in model testing for evaluating Estimation related to the VCE is directed to two

input subsets along with their being components of components: estimation of the conditional expectation
importance indicators. Although plots &f(y | S; = s3) and estimation of its variance. With a linear regression
can be very informative in revealing the effect.®f, their approach, the entire estimation problem reduces to the
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5. Prediction Variance and Importance Indicators

ordinary regression analysis problem of estimation of depending on the number of inputs and the complexity

the vector of parameters. For a variance approach, of the linear model. On the other hand, estimation for
the conditional expectation is an unspecified function of general variance methods requires many more computer
z. Therefore its estimation at each valuezofand the runs. Therefore, variance approaches have been used in

subsequent estimation of its variance rely on sampling very limited situations in the past. Modern computing has
theory. Estimation for linear regression is well understood opened the door to variance methods.
and requires a minimum number of computer runs,
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6 ESTIMATION FOR IMPORTANCE INDICATORS

This section discusses methods for estimating the varianceThe properties of an rLHS based on an LHS of sizare
components related to the VCE. Estimates are of the  conditioned on the: particular values of each input. In an
sums-of-squares variety from analysis of variance. LHS, values are sampled from intervals, a procedure that
Sampling plans are based on LHS. To more easily presentallows certain estimators to be unbiased. A disadvantage
fundamental ideas and more clearly present procedures of the procedure is that some samples will contain extreme
used in analyses, estimation is discussed for three cases: values (in the tails of the distribution) that cause sample

e S, = {;}, individual inputs
e S, ={;, S}, augmentation by individual inputs
* S, an arbitrary subset of size> 1

The first case occurs at the beginning of an uncertainty

estimates to be unusually far from the true value. As a
compromise, probability midpoint or median values from
each interval are used instead of sampled values. This
change is equivalent to changing the input space from
continuous to discrete. From a practical point of view,

the change is not likely to be material. Theoretically, for

analysis when the objective is to assess the importance ofa large enough number of intervals and suitably smooth

each individual input with respect to prediction variance.
A single sample ofy-values based on LHS is used

to estimate prediction variance and the VCE for each
input variable. The second case is encountered when
sequentially constructing and assessing importance of
subsetsS,;. The case examines a method for estimating
the PVCE, the increment to the VCE from the addition of
inputsz; to a previously selected subset As in the first
case, the same sample pialues is used for each input

variable. The final case arises in evaluation of an arbitrary

modelsm(-), the use of probability midpoints is also
immaterial and might even produce better estimators in
a mean-square-error sense.

6.1.1 Base Case Sample

An LHS of sizen for I inputs is denoted by the matrix

Dy =[Xy, X, -+, X7]

subset of inputs. It is a simple extension of the first case Of dimensionn rows x I columns. Each column vector

with the subset treated as a single input variable.

X; = (%51, %, -, ;)" containsn valuesz;; sampled
from equal-probability intervals and randomized as to

The estimators are sums of squares and arise in a naturalPosition in the vector. Although not crucial to the design,

manner from familiar analysis of variance formulas, as
illustrated in Appendices A.4, A5, and A.6.. Their
properties come from simple random sampling and
carry over, through approximation, to LHS. Estimators
corresponding to different subsets are not required

to be independent, and it is unlikely that they are. It is
emphasized that there is no assumption that m(z) is

a linear function of the inputs.

6.1 Basic Sampling Plan:
Replicated LHS

Variance components are estimated from a design called

a replicated LHS (rLHS). Each replicate in an rLHS
corresponds to independent randomizations of the set of
values of each input. An rLHS is not a replicated LHS
plan in the usual sense that replicates are independent
and identically distributed samples. However, even in an
LHS, the individual sample values are not independent
and identically distributed samples.

23

probability midpoints of the intervals rather than sampled
values are used.

An rLHS-n is r replicates of the LHS obtained as
independent permutations of all of the columnsiof.
Replicatekt and the full designD are denoted by

Dy = )?1,k;5(2,k;"';)~(f,k yk=1,2,---r

) (6_1)

Where)~(7;7k is an independent permutation of the rows
of X;. The full design matrixD is an ¢xn) row X

I column matrix. The construction points out that the
samen values for each input appear in each of the
replicate design matrices and that the replicate design
matrices differ in the input combinations designated by
the rows of the matrices.
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6. Estimation of Importance Indicators

6.1.2 Dependent Inputs sample (total) sum of squares as

The situation is certainly simpler when inputs are L&
independent. Because of this, inputs are sometimes Viely] = = Z (Yix —T)°
treated as independent when it is more appropriate to treat i

them as dependent. Alternatively, dependence among
inputs can be approximated by inducing sample correlation
structure through a permutation process, such as described
by Iman and Conover (1982), or by a procedure due

to Stein (1987). Finally, when a proper treatment is
required—as when the ranges of inputs depend on each The n-divided sum of squares is preferred to {he— 1)-
other—sample values are selected according to their joint divided one with LHS. For simple random sampling, the
probability distribution. This action can be accomplished (n — 1)-divided sum produces unbiased estimators. The
in two ways, depending on the specific situation. If, for familiar analysis of variance relationship for sums of
example,z; andz, are not independent and have joint  squares between replicates and within replicates is
density functionfis (21, 22) = fi(x1) - fo1 (22 | 1), then

one method is to sample directly frofia», and the other

|

b= %Ey]’k.
ji=1

method is to sample first from the marginal dengityand ) = 7. — )2
then from the conditional densitf;;. For best estimation ,;; wix =) 1; ; #:-9)
of f,, the proper distribution of, andz, should be used. roon

However, for determining important inputs, approximate + Z Z (yjr — y,k)z ,
sampling methods can be used during screening followed F=1j=1

by a proper sampling method for validation.

. . L. where
6.2 Estimation for Individual Inputs

=S| =

T=-> Tx-

Estimation for assessing importance of individual inputs k=1

is a fundamental component of uncertainty analysis. This

section discusses sample design, formulation of estimators,|t shows that the pooled variance estimator is
and critical values. The general principles used readily

extend to the augmentation and arbitrary subset cases

~ 1 <~
presented subsequently. Volyl = - ; Vi [y]
A 1 r 2]
6.2.1 Sample Design =— ;2 (i — 1)
=1 5=

Estimation of variance components for all of the individual 1 I 1<
inputs can be accomplished using a single rLHS of size — Z Z (Y — ?)2 - = Z Ty — ?)2 .
n with r replicates. The full sample requiréé = n x r == "=

model runs and predictiong. (As mentioned in the
introduction to this section, it is neither required nor likely
that the estimates are independent.) The design matrix
D for r replicates in an rLHSe is given in Equation
6-1. The associated model predictionsre {y; } for
j=1,--- nandk =1, ---,r.

The pooled estimator is only close to unbiased—note
the divisors in the sums of squares—for simple random
samples of sizexr. However, it is even less biased for
LHS. For LHS, the last term involving the replicate means
is expected to be small, so the estimator used for variance
of y is the simpler form

6.2.2 Prediction Variance Estimate

n r

. 1 & B
Each of ther replicates of an LHS yields an estimate Vvl = — S -9 (6-2)
of the variance of the prediction from each replicate J=1k=1
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6.2.3 VCE Estimate

The VCE forz; given by Equation 5-2 is

VCE(x;) = V[E(y | ;)] .

It is estimated separately for each input. Without loss of
generality, the predictiong are assumed to be labeled so
that {y;s, ¥ = 1,---,r} corresponds ta:;,;. Estimation

of the VCE is viewed in two parts: one concerning the
expected valueH) and the other concerning the variance
(V). The estimator in the expectation part is the sample
average ofy-values for whichz; = x;;:

= 1
Yi =+ Z Yix -
k=1
For simple random sampling and, approximately, for LHS,

E(y;) = By | ©ij)

as desired. The expected value part of the estimation is
based onr valuesy;y.

The complete construction in the variance part begins with
the sum of squares whose expectation, from Appendix
A4, is

kel

%Z@j -7)’

j=1

~

" VIB( 2]+ T E(V]y | )

Therefore, the VCE for; can be estimated with

o 1 n
VCE(x:) =~ (5 ~7)’

ji=1

1 n r _ 9
WZZ@M_%) .

j=1k=1

(6-3)

The variance part of the estimation is basedronalues
of the meany; .

6.2.4 Correlation Ratio Estimate
The correlation ratio is estimated by a ratio of estimators in
i” = R = VCE(x;)/VIy] , (6-4)

25

6. Estimation of Importance Indicators

which, in terms of Equations 6-2 and 6-3, is

Ri(ﬂfz) = %Z (?,’ _y)z - %ZZ (yij _yj)z
RE-DI) NI
= {r;(?,' —y)Q - %Z:Z@” _yj)2}

n r

NS (s -9

j=1k=1

} . (6-5)
These equations are made up of the sums of squares
from a one-way analysis of variance. How they relate the

VCE and residual variance components with analysis of
variance is shown in Appendix A.5.

Importantly, while analysis of variance ordinarily applies
with a linear model, the estimators of prediction variance
and VCE used in?? do not depend upon any such model.
Estimates of the correlation ratio and partial correlation
ratio show how analysis of variance formulas relate to
estimation of variances used for importance indicators.

In fact, the quantity
} (6-6)

N

R’ = TZ (yj - y) /
j=1

from a linear (analysis of variance) model is related to

RZ through

S -9

j=1k=1

1

R? = R? - ;(1 - R%). (6-7)

Derivation of critical values for? and 2 follows.

6.2.5 Critical Values

Critical values fork? and k2 are derived under the null
hypothesis for a random-effects model thgt aren x

7 independent and identically distributed normal random
variables partitioned at random into groups of size

r. The null hypothesis implies that the labeling, of
y-values according to the values; constitutes a random
partition—thaty is independent of:;. The additional
assumption of (approximate) normality is common and
needed fork? to have a beta distribution. The beta
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6. Estimation of Importance Indicators

distribution is related to the F distribution through the
transformation

1

R? = , 6-8
T (o /o) F(o, 1) (¢-8)
where
vp=n—1
vo=n-(r—1).

The expected value a®? under the null hypothesis is

E(Rz): n—1

n-r—1

L (6-9)

r

1R

which shows how large, and smalk? is expected to be
as a function of the number of replicates Equation 6—7
is used to transform values fro® to RZ.

6.2.6 Notes on Approximations

The expectation results are derived from a simple random

sample of observationg,;;. Additionally, the beta
distribution of R* derives from they,; having a normal
distribution. Therefore, the results are approximate
for an LHS and fory;; which are rank transformed.
Nevertheless, the critical values and mean valuefbr
provide convenient practical guidelines for analysis.

6.3 Estimation for Augmentation
by Individual Inputs

Augmentation describes a situation very much like the

one treating individual inputs, except that importance

of inputs is assessed over and above the importance of
a previously chosen subset of inputs. For a previously
chosen subset,., the objective through augmentation is

to estimate the VCE for subsefs, S, } which include an

additional input. The strategy is to use the relationship,

from Equation 5-11,

VCE({2;,5,}) = VCE(S,)+ PVCHz;;S,). (6-10)

The PVCE is estimated as the average of the (conditional)

VCE estimates over a sample of values (sitespof

NUREG/CR-6311

6.3.1 Sample Design

The subsetS, is a subset of inputs. Let

U:{UI;UZ)"';US}

denotes sites for.S;, meanings vectors that give the
values for the inputs irt,,. The design matrix at site
t is denoted by

D; =v; @ Ds,) , (6-11)
meaning that the columns ab in Equation 6-1
corresponding to the inputs i, are replaced by
the fixed values in,. The values of the inputs,. are

constant and equal to the valuesat sitet. Finally, the
sites are selected by LHS.

It is allowed that only one site of, be sampled. This
situation is equivalent to setting the inputsSp to their
median values in the base case sample and doing the
analyses for individual inputs.

6.3.2 Conditional VCE and PVCE Estimates

At each sitef, the base case design matrix is used for all
inputs except those iA;., which have fixed values at each
site. The VCEs at site, calculated with the predictions
{w;x }, are conditioned on the valug of S, and called
conditional VCEs. When averaged over all sitgsthey
become the PVCE for each input. Applying Equation 6—3
at each site gives the conditional VCE estimate as

o 1 kel
VCE(l‘i | S.r = Ut) = g Z (?t,' - yt>2
i=1

1
_WZZ (vj _?tj)2~

ji=1k=1

(6-12)

When averaged over (equally probable) sites, the PVCE
is obtained as

o 1 5 n
PVCH=:S,) = — > > (7, —7)’
t=1j=1

r

1 5 n
 snr? ZZZ <yfj’“ - yﬁ)Q'

t=1j=1k=1

(6-13)
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6.3.3 Partial and Incremental Partial
Correlation Ratios Estimates

The estimate of the partial correlation ratio is formed
as the ratio

i, = PVCE;:S,,)

/{ 5711r2 > 2.2 —%)2}. (6-14)

t=1j=1k=1

6. Estimation of Importance Indicators

objective of analysis is the importance 8f. An LHS for

Sy is combined with an LHS fol5], to allow estimation
relative to the entire subsét, and, possibly,S.. If a
replicated LHS is used fof?, importance of its input
components can be assessed as described in the Section 5.

6.4.1 Sample Design

The sample design for estimating variance components for
subsetsS, of arbitrary size is essentially the one in the
Section 6.2 withS, playing the role ofx and S playing

the role ofS,.. The number of sites is the sample size

The denominator is the estimate of the residual prediction ¢ S, and can be approximately the same as the number
xr

variance adjusted fat; andS,. The estimated incremental
partial correlation ratio, based on the prediction variance,
is given by

e = PVCHzi;.5,)/ V], (6-15)

where the prediction variance estimator is Equation 6-2.
That estimator of prediction variance is preferred to one
from the sample used to estimate the PVCE when the

number of sites is small and particularly when= 1.

6.3.4 Conditional Correlation Ratio Estimate

At each sitet, the conditional VCE and correlation ratio
can be used as local importance indicators. Local in this
sense refers to the fixed value of the inputsSin The
conditional k2 estimate is given by

cn: = {Z 5= = 10 (o —W}

j=1 i=1k=1

/ {ZZ (vijr — @)2} : (6-16)

j=1k=1

which is Equation 6-5 applied to site The average
conditional R?, weighted by the estimate of the prediction
variance at site, is the estimate of the incremental partial
correlation ratio.

6.4 Estimation for Arbitrary
Subsets of Inputs
Methods for analysis of an arbitrary single inputeadily

generalize to methods for an arbitrary subset With the
inputs partitioned into two disjoint subsets and.S:, the

27

of intervalsn used for individual inputs. The sample size
for S is alson, and onlyr = 1 replicate is required. The
sample design at siteis given by Equation 6-11, where
v, represents the values of the inputsSp at the site and
D5, represents the sample on the inpffs the same
sample values of which are used at each site.

6.4.2 VCE and Correlation Ratio Estimates

The VCE for.S,. is estimated as in Equation 6—3 for an
individual input by

5

o 1 B . 1 5 n o

VCE(S:) = 2> (=) — 550> (i — %),
t=1 t=1j=1

wherey, is the sample average at site The correlation

ratio is estimated as in Equation 6-5 as

R(S,) = {nE(yt RS S MO —@)2}

t=1j=1

/{ii%—yﬁ}.

t=1j=1

The symmetry of the sample design supports estimation
of the VCE forS¢ if it is statistically independent aof;; .
In that case, the VCE fof; is given by

VCE(S:) = %Z @,-7) - ni S (w -7;)
j=1 j=11t=1

wherey ; is the sample average at sifefor the inputs

in S;. The reason the VCE fo$; cannot be estimated

if S, and.S? are not statistically independent is that the

distribution of S given S, may be different at different

sites.
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6.5 Regression Interpretations y

Relationships between variance components, conditional
expectations, and a general linear regression model can be
seen by way on the example shown in Figure 6.1. In the
figure, the prediction data from an rLHS are plotted against
an individual input. AIlN = n x r values are plotted

on they-axis and again above thevalues to which they > rvalues
correspond. There are groups of data corresponding to

the n distinct values ofr andr» parameters in a general

linear model. Within each group there arey-values

corresponding to the replicates of the LHS. Thé& values

on they-axis yield the total sum of squares (SST) and | | | | Values of
correspond to the prediction variangdy]. These values ‘ | | | an input x
are partitioned intaw groups withn mean values (not

indicated in the figure). The group mea@s, ¥, - -, ¥, T
correspond to: conditional expectations, as a function N = nx rvalues
of z, and ton parameter estimates in the linear model. of the output
The means yield the between-group sum of squares
(SSB) which corresponds to the VCE. From a regression
perspective, the group means are the predicted values

whose sum of squares is the regression sum of squares. VCE — VCE(z;). An indicator of the importance of;

The r values within each group correspond to regression g e \cg and corresponding correlation ratio. The VCE
residuals when compared with the group mean. The sums; given by Equation 5-2 is

of squares about the group means form within-group sum

of squares (SSW) corresponding to the residual variance VCE(x,) = V[E(y | #:)] -
component. The more important the input is, the larger is ' '
the between-group variability reflected in larger variability
of group means and, at the same time, smaller residual

XXX XX

XXX XXX XXX XXX XXX
XX XXX
XXX XX

XXX XX

Figure 6.1 The r replicates of
an LHS design for one input

It is estimated in Equation 6-3 as

or within-group variability. The residual or within-group o 1™ ,

variability is due to all of the other inputs. The multiple VCE(z;) = - Z ¥, —7)

correlation coefficient?? = SSB/SST is a measure of j=1

the goodness of fit of the regression and corresponds to 1 < 9

the correlation ratio)” = VCE(xz)/V]yl. ) 2; (% —7;) "
J= —

Correlation Ratio — 5?. The correlation ratio compares

6.6 Summary of Formulas the size of the VCE with that of the prediction variance.

for Estimation The correlation ratio for; from Equation 5-5 is

The N = n x r observations{y;;,j = 1,---,n and 7’ =VI[E(y | #:)]/V]y]

k=1,---,r} are from an LHS of size: replicatedr = VCE(z;)/V[y] .

times. They are labeled ofto correspond to the

distinct values of an input, say,. It is estimated in Equation 6—4 as

Prediction Variance. Prediction variance is a measure of 0 =R = \//(Z\E(xi)/‘A/[y] .

the uncertainty irny due to uncertainty in inputs. The

prediction variance is estimated in Equation 6-2 as In the formulas for the VCE and correlation ratio just

presented, the single input can be replaced by a subset

N 1 & of inputs S,.. In that case, the VCE and correlation ratio
N2 . : .
Viyl = o E E (wie =) would be indicators of the importance of the subset of
j=1 k=1 inputs. The sample valuegy; .} would be labeled iry
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to correspond to the distinct sample values (sitesy,of given in Equation 5-12 as
There may be only one such value, the vector of medians,
or there may be a sample afvalues from an LHS. 7712, =E(VI[E(y|{S:,z"}) | S:])/EV]y | S:])

= PVCHz"; S, )/ResidualS:; S,.) .
Important inputs are selected sequentially, in a manner sim-
ilar to step-up regression. Subsgt represents the subset The partial correlation ratio far* adjusted for the subset
of inputs selected so far anf represents the remainder of inputs S, is estimated by in Equation 6-14 by
of the inputs. The importance of the additional inputs,

say,z* in S¢ is to be assessed. The sample observations ﬁf} :PT/EE(x;*;Sx)
{yijr,t=1,---;sandj=1,---,nandk =1,---,r} are .

labeled onj to correspond to the distinct values of 1 =2
the inputz* under consideration. The indéxabels the / snr? ;;I; <y”k y”)

different sites fors,., andk, as before, indexes replicates

of the LHS of sizen on 5;. Partial Incremental Correlation Ratio — 7?.. The

. o ) partial incremental correlation ratio compares the size of
PVCE — PVCEz";.5,). An indicator of the importance  the pVCE with that of the (full) prediction variance. It

of the additional inputc™ beyond that of the subset of is given in Equation 5-13 as
inputs S, is the PVCE and corresponding correlation
ratios. The PVCE fore; adjusted forS, is given in n. = BE(VIE(y | {5, ="} | S:1)/ VY]

Equation 5-10 as — PVCEHz";S,)/V[y],

PVCHz";.5;) = E(V[E(y [ {2, 5} | S:]) - and is estimated from Equation 6-15 as
It is estimated in Equation 6-13 by . = PVCHaz;; S, )/ VYl -
= 1 WL N2 Thel7[y] estimate of prediction variance from the original
PVCHz;;S,) = sn Z Z <ny' o y,) sample can be used as a better estimate than one available
. t=1i= from a small numbes of sites.
1 n r B )
snr? ;;I; (ji = 915) Conditional Estimates. When there is only = 1 site

in estimates of the PVCE, partial correlation ratio, and

partial incremental correlation ratio, the estimates are
Partial Correlation Ratio — 77}%. The partial correlation more properly called estimates of the conditional VCE,
ratio compares the size of the PVCE with that of the conditional correlation ratio, and conditional incremental
residual prediction variance after adjustment $or. It is correlation ratio, conditioned 08, = s,.
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7 STEPS IN UNCERTAINTY ANALYSIS

This section provides a general overview of uncertainty 7.1.2 Identification and Specification
analysis procedures; the steps are not tied to particular of Model Inputs

methods. The overview is not exhaustive nor does it
address all possibilities likely to be encountered in a large
variety of applications or, even, in the sample applications
in this report. The steps are divided into four parts:
problem definition, screening, validation, and methods
sensitivity and diagnostic tests.

Inputs describe the application both in terms of initial
conditions of the scenario and in terms of the process
dynamics modeled byn(-). All relevant inputs, whether
they are called input variables, parameters, or data,
and whether they come from external input files or are
hard-wired in the code, are identified as being part of the
. . . context of the uncertainty study. Some of the variables
7.1 Pre“mmary Considerations are likely to be set to fixed values and not changed at all.
and Problem Definition These variables are thought of as being assimilated into
the functionm(-). The remaining variables, those whose

o ) o values are assumed to have input uncertainties, are the
Objectives of the analysis of the predictignfrom the ones denoted by and called inputs.

modelm(-) can be stated succinctly as (1) to quantify

prediction uncertainty and (2) to quantify the importance

of inputs with regards to prediction uncertainty. The 7.1.3 Assignment of Probability Distributions
statement may be misleading in its simplicity because it

does not mention all of the SpeCificationS and restrictions For each input, limits on the range of values are Speciﬁed_

which apply. For example, early in the course of Although narrow limits might be appropriate for a
performing the analysis it becomes clear that prediction preliminary uncertainty analysis, they should be wide
uncertainty fory = m(x) cannot refer taeveryprediction enough to provide adequate coverage in the anticipated
usingm(-), but only to the specific application under  input space. On some occasions, however, accurate

Study, as quantiﬁed by the inplﬂsand their probablllty bounds may be necessary, particu|ar|y Whe(‘l') is
distribution f,.. Therefore, the appropriateness of the sensitive to values at a boundary.

representation of reality reflected Gy must be duly
assessed. The assessment extends both to the range
V—including range dependencies—of the inputs and to
the form of the probability distribution. It is important
to remember that uncertainty analysis is relative to the
uncertainty triple(f,., V, m(-)).

The joint range of values of some sets of inputs may
exhibit dependencies and not be the product of their
individual ranges. A common example of this behavior is
where the value of one input should not exceed that of
another. All such joint range dependencies are specified.

Probability distribution f,, is constructed in parts:

- . individual or marginal distributions for inputs that
711 DEflmtlonS of Model Predictions are statistically in%lependent, and joint disF:ributions for
and Selection of Model Outputs those subsets of inputs that are dependent. Each subset
of dependent inputs falls into one of two kinds: the joint
range of values is the product of the individual ranges
or it is not. After all specification of ranges of values,
the forms of the probability distributions are determined.
For preliminary uncertainty studies, simple distributions
for f,, like the uniform and beta for finite ranges and
the normal and exponential for infinite ranges, and their
logarithmic cousins are often used for convenience’ sake.
In any event, an examination of sensitivity of conclusions
to the choice off, can be both informative and necessary
as part of scientific investigation.

The actual model (computer code) outputs to be recorded
for each model run are specified. The model predictions
of interest might be outputs or they might be derived from
outputs. For example, an output might be deposition on
a spatial grid at several time steps. The corresponding
prediction of interest might be integrated deposition at
each time step or just total deposition. For simplicity of
presentation, the rest of this section considers a single
prediction y.

31 NUREG/CR-6311



7. Steps In Uncertainty Analysis

7.1.4 Construction of the Base tests. Several alternatives methods to indicate importance
Case Set of Runs are available. The sampling plans LHS and rLHS support
both variance estimation for the correlation ratio and
also regression methods which include partial correlation.
Both of these methods can be used simultaneously to
construct candidate subsets.

The specification of model outputs, inputs, ranges of
values, input distributions, fixed input variables, and
their values provides the information needed to generate
a sample of model computer runs from which the
distribution ofy can be estimated. For independent inputs, Most useful would be the determination of candidate
an LHS of appropriate sizen] is used. For inputs that ~ subsets of size 1, 2, 3, and so forth. The product of
are not independent, the joint distribution is sampled  this phase of analysis is lists of input subseéts =

in any appropriate way, including the possibility of a  {Cj, j =1,2,---} representing candidate subsets of

stratified sample. size s inputs each. Normally, interest might reside in
best subsets of size 1, 2, 3, and so forth up to some

The question of sample size is always present and (small) number of inputs that can be said to account for

almost never answered satisfactorily. Several points bear €ssentially all of the uncertainty in. In mathematical
consideration. First, interest lies in estimation of the ~ t€rms, the process finds for each sizéhose subsety*
density functionf,, and to that end, there are many for which V[y] — VCE(C}.) is relatively small, subject
possible estimators. Statistical literature might provide an t0 sampling variability. Because of time for computation,
evaluation of properties of the sampling plan used (LHS) Some analyses will proceed as directly as possible to the
with respect to mean square error, say, of the density smallest acceptable subset of important inputs. The full
estimator. Such an evaluation is beyond the scope of sequential technique is used in the application in Section
this report. One approach to an empirical evaluation is 8 and the abbreviated one is used in the application in
to try several sample sizes, say, 100, 500, and 1000, and Section 9.
several samples of each size. An examination of different
estimates obtained from the samples and with different Wheny is really several predictions, one might perform
settings of parameters in the density estimation algorithm several screening exercises in parallel by constructing
will guide one to a reasonable choice. It is supposed that acandidate subsé&i® to be the superset of candidates, those
very large number of computer runs can be made, and soinputs considered important for at least one prediction.
computer resources do not pose a conceptual limit on the This process has a drawback if there are multiples stages
analysis. When computing resources are limited, either in in screening, as described in Section 9. Namely, the
time or money, compromises will, undoubtedly, occur. result is really the identification of the inputs which are
unimportant for any of the outputs. If identification of
It is supposed that the base case set of runs consists of important inputs for each output is necessary, separate
an LHS of size 100, and from those data an acceptable analyses for each output may be necessary.
estimate of the density function of the predictignis
constructed. The analysis continues with the identification . . . . .
of those inputs and input subsets that are important with 7.3 Validation and Dlagnostlc Testlng
respect to prediction variance.
Validation and diagnostic testing provide independent
. . evaluation pointing towards confirmation of the importance
7.2 Sequentlal Screening of inputs selected with the screening procedures. Let
S; denote the set of inputs to be validated as{d
The analysis proceeds from the base case to constructionthe remaining inputs. Validation consists of two
of candidate subsets of important inputs. The measure complementary steps. The first step in validation is
of prediction uncertainty used is prediction variance and to examine the conditional prediction distributions when
the measure of importance could be the correlation ratio. the supposed important inputé are held fixed. If these
The process is called screening because the subsets aredistributions, independent of the conditioning valug
only candidates to be tested or “validated” before being reflect a substantial reduction in uncertainty as compared
accepted as important. Screening is intended to allow with the unconditional prediction distribution, thef is
for a series of trial selections of important input subsets confirmed as important relative to prediction uncertainty.
which are later validated through a few comprehensive The sample of conditioning valug$..1, s.2, sx3,- - -} at
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which S, is fixed must be adequate to cover the range
of S,. It is not possible to state a sample size generally
adequate for all analyses.

The second step in validation examines the conditional

7. Steps In Uncertainty Analysis

()

Define domains for each subset of inputs that cannot
be varied independently.

(6)

Assign uniform or loguniform distributions to
independent inputs.

distribution ofy when the supposed unimportant inpsts
are held fixed. The conditional distribution gfs expected
to look very much like the unconditional prediction
distribution independent of the value 6f. These two
validation steps follow from the characterizations of

Define appropriate joint distribution functions for
dependent subsets of inputs.

Obtain base case sample where all inputs vary.

importance and prediction uncertainty in Section 4.

Finally, diagnostic testing is meant to describe the
examination of the data generated during screening and
validation. Simple procedures such displaying output
valuesy, or scatter plottingy versusz, or displaying
sample standard deviations for candidate subsets or for
different sites for fixed subsets can all point out important
relationships and behaviors which go undetected by
summary statistics used in screening.

(9)

Determine important subsets of inputs:

(&) Initial stage analysis. Important inputs are
determined for each output. Those inputs not in

any of the lists are deemed unimportant.

(b) Subsequent analyses. Separate sequential
screening is done for each output to determine
important inputs. As before, those inputs not in

any of the lists are deemed unimportant.

Sequential analyses serves several purposes and can
produce a more complete subset of important inputs
the more the model deviates from linearity.

7.4 Summary of Steps in

Uncertainty Analysis

Uncertainty analysis consists of two parts: preliminary
analysis and final analysis. The main difference between
the two lies in the probability distributions of the inputs.
In a preliminary analysis, approximate distributions like
the uniform and loguniform that are easy to work with are
matched (fit) to the range, mean, percentiles, and other
information about the inputs. Results of the analysis may
be tested for sensitivity to changes in distributions. In a
final analysis, best estimates for critical input distributions
are used. A typical sequence of steps appears below.

1)

(2)

(10) Perform suitable validation and diagnostic testing:

(8) Unless a single subset of important inputs for
all outputs is to be identified, each model output
should be analyzed independently relative to its
own subset of important inputs.

(b) If important subsets do not sufficiently account
for prediction uncertainty, continue with the

sequential input selection in (9).

Data from the analysis is examined to reveal
any previously undetected relationships and
behaviors.

(©)

Identify and describe all potential parameters or input (11) petermine final probability distributions for important

variables. They fall into three categories: those inputs, and assign the same preliminary distributions
relating to the numerical algorithms, those describing to the unimportant ones.

phenomenology or mechanics of the process being
modeled, and those describing the event or scenario (12) Choose among alternative submodels.

being studied. (13) Repeat (8)(10).
Identify any inputs which will not be further
considered and state how they will be assigned
values.

(14) Examine sensitivity of results to perturbation of
input distributions. This step is another uncertainty
analysis in itself, where the “inputs” define the real

(3) Identify any subsets of inputs that cannot be varied input distributions. Whether a formal or informal
independently. analysis is carried out is a matter of choice.
(4) Choose ranges of variation for those inputs that can (15) Continue if any corrective actions appear necessary.

be varied independently.
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8 ANALYSIS APPLICATION I

In the discussion to follow, the parts of an analysis

presented in the previous section are applied to a model

which predicts flow of material in an ecosystem. The

details of application are intended to serve as a guide

to a simple uncertainty study. The analysis follows

McKay and Beckman (1994b) where important inputs
are screened—tested for importance—in stages: top
single inputs, top pairs, top triples, and so forth. The
top 10 or so candidates at each stage move on to th

e

next stage to be augmented by an additional input. This
type of analysis requires an extensive number of runs,

so it may not be appropriate for all models. The second those that vary over several orders of magnitude, for
analysis application (Section 9) uses a modification of the which loguniform distributions are used. In summary,

procedure for longer-running models.

8.1 Problem Definition

The modelm(-) is a compartmental model of an

ecosystem. The flow of material among the several
compartments, indicated in Figure 8.1, is described
by a set of linear differential equations which relate
concentrations in compartments as functions of time.

Although eight output compartment concentrations are
outputs calculated by the model, only the concentration
in compartment C3 at a large value of time when the

system is in equilibrium is considered in this analysis. The

inputs 2 are 84 coefficients comprising initial conditions

and transfer coefficients. The uncertainty analysis is
required because of uncertainty in appropriate values
the 84 inputs.

Figure 8.1 Compartmental model

of

35

The purpose of the analysis is twofold: first, to obtain a
preliminary estimate of the variability of prediction due
to input variability and, second, to supply guidance for
refining uncertainty limits for input values. Literature
review and expert judgement provide absolute ranges
and best estimate values for each input. Because the
analysis is preliminary, only minimal effort is expended
to quantify shapes of probability distributions on the
ranges or in investigating and representing statistical
dependencies among inputs. Independent uniform
probability distributions are used for all inputs except

the study considers
» y, the concentration in compartment C3 at equilibrium

 , a vector of 84 inputs which are parameters in
differential equations that govern the concentrations

 f., ajoint, independent uniform or loguniform
probability distribution for the inputs

An assumption motivating the analysis is that reducing
the uncertainty in a subset of the inputs reduces the
uncertainty iny. Whether or not the assumption is true
in this case will be investigated by examining conditional
distributions ofy when important inputs are held fixed.
The assumptions of independent uniform distributions of
the inputs is not examined in the application, although that
would be necessary in a complete uncertainty analysis.
Finally, the model runs very quickly and so there are
essentially no limitations on the number of computer runs
that can be made.

8.1.1 Base Case Sample

A base case sample of size 250 is constructed as described
in Section 6.1.1 for an rLHS of size = 25 with » = 10
replicates. Construction of the sample design begins with
the 25 row x 84 column matrixD, corresponding to

an LHS of size 25. The replicates are formed from that
matrix by randomly permuting its columns 10 times to
form to the full 250x 84 design matrix

D,

D,
D= .
Dy
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8. Analysis Application |

The construction points out that the same 25 values for
each input appear in each of the 10 replicate design
matrices and that the replicate design matrices differ in the
input combinations designated by the rows of the matrices.

8.1.2 Prediction Distribution

The estimate of prediction density functigip obtained
from the base case sample of si¥e= 25 x 10 = 250

runs is shown in Figure 8.2. The density function was
estimated using the function “density” in the S Language
(Becker, Chambers, and Wilks, 1988) from the S—PLUS
software (Statistical Science, 1991). Although the mode of
the distribution is about 10 and there is a lower bound of
0 on concentration, values larger than 100 are very likely.
The long tail of the distribution extends beyond 400 and
shows thaty has a wide range of variation. Because

of the nonsymmetric shape ¢f, simple measures like
the mean value (168), the median (26), and the standard
deviation (400) are inadequate as full descriptions of the
probability distribution ofy. In fact, the range of the
data used in estimation is 0.02 to 7700. Therefore, the
effect on uncertainty of reducing prediction variance is
observed better and more completely in the (estimated)
density function itself.

0.008 0.012

0.004

0.0

100 200

Concentration (g/kg)

300 400

Figure 8.2 Estimate of prediction density f,

In the base case data, there are 10 very large values
of y (on the order of 7000 g/kg) coming from the tail
of its distribution. These outliers have undue influence
on the sample variance used in importance measures.
The situation is alleviated by use of the rank transform
of ¥ when doing input screening. For the base case
data, the 250 values of are ordered from smallest to
largest. The smallest value is replaced by 1, the next
smallest by 2, and so forth to the largest value which
is replace by 250. There is nothing particularly optimal
about the rank transformation in this application: the
logarithmic transformation would be another acceptable
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choice. Although the rank-transformed data are used in
screening when selecting potentially important inputs,
the density functions off examined in validation are
calculated with the original data values.

8.2 Sequential Screening Procedure

The correlation ratio (Eq. 5-5) and other variance
ratios are used as importance indicators for screening.
Nevertheless, the concurrent use of the partial rank
correlation coefficient is a reasonable practice. Subsets
of inputs (5;;) are evaluated in stages. Those whose
importance indicators are large enough become the
candidate or top subsets in the stage. In Stage 1, base
case data are examined for individual inputs. The top 10
or so inputs are designated the Stage 1 candidates and
become the first elements of subsets of size 2. The top
10 or so of these become the first 2 elements for subsets
of size 3, and so forth. At each stafe subsets of size

h are examined, and those most promising—the 10 or
so—become candidate subsets in thedi4t There is no
reason that candidate lists be constructed by increments of
one input. For example, it is reasonable to proceed from
the list of candidate individual inputs”, to examination

of subsets of size 3, say. This strategy might be taken
when three inputs stand out as dominating prediction
variance, strongly suggesting that any important subset
would contain all three of them. However, when inputs
are dependent it may not be necessary that they all be
selected as part of the subset of important inputs.

The transition from one stage to the next is explained for
Stage 1 to Stage 2. The transition from arbitrary stdges
to”’ > h+1 uses a different procedure and is explained in

a subsequent section. In general, the procedure requires a
large number of computer runs, so it may not be practical
for all models. Reasonable modifications include selection
of only the top candidate at each stage and its subsequent
augmentation by several inputs instead of just one at

a time—the approach used for the second application.
Discussion of details of the analysis continues.

8.2.1 Stage 1

For each of the inputs, the ranked valuegddre ordered
and relabeled to correspond to the ordered values of that
input and are used in the computations of the VCE Ajd

(or R?) from Equations 6-3 and 6-5. The denominator
of 2 is the same for all inputs because it is independent
of the ordering ofy-values.
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Figure 8.3 Ordered R? for single inputs

The 84 values of?? for each input are plotted in Figure
8.3. The values are plotted from largest to smallest,
and negative values are plotted as zeros. The largest
8 values correspond to inputs in the list of candidates
Cl = {63,1,84,69,24,68,20,67}. The largest few

of these correspond to only about 20% of variability
accounted for, indicating the contribution of any individual
input to prediction variance is less than 20%. Moreover,
because of the sample-to-sample variability expected in
the values ofk?, it is difficult to point to any of the larger
values as being significantly different from others.

The R2-values for the inputs ifC"" appear large enough
to be set off from the rest. However, since no individual
input subsetS' of size 1 dominates uncertainty fgr the
analysis continues with identification of candidate input
subsetsS? of size 2.

Before proceeding to Stage 2, the effect of inpuis
investigated in more detail to provide insight into the
analysis process. The effect on uncertaintyyiof x4,
whose R? is about 0.20, is shown through two sets of
conditional distributions. This part of the analysis has the
flavor of the validation step: the effect on the uncertainty
in y of fixing input 1 at different values is examined.
When inputl is fixed, the variability iny is due to the
other 83 inputs varying. Ten values of are selected
using LHS to provide a sample of, which spans its
range. For the other 83 inputs, an LHS of size 250 is
constructed which samples their 83—dimensional space.
At each point in ther; sample, 250 model runs are made
using that value and the LHS-250 for values of the other
inputs. The 250 output valueg are used to estimate

the conditional density of; given z; fixed. These 10
conditional densities are plotted in Figure 8.4. The
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0.0
L

200
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Figure 8.4 Conditional densities
of y for 10 values of {x; }

densities show the effect of changing the fixed value of
z; on the distribution ofy, and offer the interpretation

to the R2 value of about 0.20. Namely, while, alters
the distribution ofy, it alone does not seem to be able to
significantly reduce the prediction variance.

To complete the examination related 4, the effect of

the complement subset of 83 inputs is examined in the
same way. An LHS of size 10 is used to select 10 values
of the 83-tuple of other inputs; an LHS of size 250 is
used to select 250 values of. For each value of the
83-vector, the conditional density gfis estimated from

the runs with the 250 values af,. The densities are
plotted in Figure 8.5. The patterns in the figure show
two things. First of all, each curve indicates the extent
of the variability iny caused byr;, because only:;

varies for each density. Second, as expected, the curves
indicate existence of important inputs among the 83 by
the differences among the 10 densities. The next stage in
the analysis looks for important inputs from the 83.

8.2.2 Stage 2

Stage 2 denotes the construction of subsets of size 2. It
generalizes to transitions from subset sizeo h + 1 and

is discussed accordingly. The possible subsets considered
are all of those that include a member from the {8t
identified in Stage 1. That means, for example,is
allowed to pair with any of the other 83 inputs, but

can only pair with the inputs i, It is true that there
may be important pairs of inputs not containing any of the
inputs inC! and which may not be identified in this stage.
There are 3486 possible pairs of which onlk83 = 664
are to be examined because only 8 inputs were selected
as candidates in Stage 1. Although special algorithms
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Figure 8.5 Conditional densities
of y for 10 values of {z»,- -, #g4}

exist to select optimal subsets in variable selection in
regression, step-up, and step-wise procedures are still
used. The procedures described here are similar to the

Top 14
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0.2
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Figure 8.6 Ordered R? for pairs of inputs

matrix D with the column corresponding to, replaced
by a column of the constant site value ©of. In this
application,s = 4 site values are used for all inputsd# .

heuristic procedure of step-up variable selection. Heuristic The values are the 12.5, 37.5, 62.5, and 87.5 percentiles

procedures and investigator intuition must suffice until
approximate bounds on optimal VCE are developed.

Stage 2 calculations are explained far, on one of the

of the distributions of the inputs.

For each input, the conditional VCE arit} are estimated
at each site from Equations 6—-12 and 6-16. The estimates

candidates from Stage 1, before presentation of complete are combined to form the PVCE an adjusted for

results for Stage 2. With:; set to a fixed value, an
analysis like the one for Stage 1 for the remaining 83
inputs can be performed. Thus, the other 83 inputs
can be screened for important inputs conditioned on the
value of z; using the conditional VCE an&?. If the
calculations are carried out at several “sites” forand
suitably averaged, the expected value of the VCE—the
partial VCE adjusted for,—is estimated for use in the
computation of the partial correlation ratio adjusted for
z1. Thus, Stage 2 is essentially just Stage 1 at a sample
of sites forz,. Finally, the VCE and correlation ratio for
each full subset of size 2 made with can be calculated
from Equation 6-10.

The design for Stage 2 has two components: a design
matrix for the values ofr; and another for the values of
the other inputs. Using Taguchi terminology (Taguchi,
1986), the design om; would be called the outer
array and the one on the other inputs the inner array.
The full design is the product of the two. To provide
some continuity of sampleg-values for comparison

x1 as in Equations 6-13 and 6-14. Finally, tRg for

each 2-input subset is formed as the sum of the UGE
estimated in Stage 1 and the PVCE estimate in Equation
6-13. Similar calculations for the rest of the inputs(ih
complete the computations.

Ordered values of?? for 2-input subsets are presented in
Figure 8.6. A natural grouping like the one in Stage 1
is not as apparent, so a somewhat arbitrary cutoff at 14
pairs is selected in the figure. Of interest, however, is
that all of the top 14 pairs are composed of inputs from
C! and that maximumiZ-values are about 0.40. This
suggests that minimal subsets will include several inputs.
The wavy pattern in Figure 8.6 comes from strings of
subsets having common members.

The candidate pairs selected in Stage 2 are indicated
in Figure 8.7. The candidate ligt? includes all 10
possible pairs from the input subsgt, 63, 68, 69,84}
plus the 2 pairs of3 with {24,67} plus the 2 pairs of
24 with {1,69}. IncrementalR?-values are informative

purposes—so that changes observed are less likely to be because they provide the incremental contribution of

due to sample-to-sample variations seen in independent
samples—maodifications of the original base case design
matrix D are used for designs in all stages. At each of

s sites, 250 runs are made using the base case design
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additional single inputs adjusted for the presence of the
already selected input(s). Comparison of Figures 8.3 and
8.6 indicate by subtraction increment&f -values. The
5-input subset of 1,63, 68,69, 84} is strongly suggested
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as part of a minimal important subset, so moving
directly to Stage 6 with the single 5-tuple candidate
C® = {(1,63,68,69,84)} is indicated. =
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Figure 8.7 Candidate input pairs in C” Figure 8.8 Ordered R2 for triples of inputs
The analysis forz; alone used (4 values of;) x
(rLHS-25 x 10) = 4 x 250 = 1000 computer runs. To
perform the same calculations for the 8 inputsG
requires 8000 runs. Because the model was fast running, ‘
no consideration was given to limiting sample sizes. In
other applications the number of runs might have to

be reduced. By no means is it intended that 8000 is a 1
required minimum number; it was used for convenience.
In this application there may be a question of the adequacy
of using only 4 points when augmenting. The important . S S _
issue is whether inputs are overlooked in the screening ‘ ‘ ‘ ‘ ‘
process. The issue is addressed in the validation step. 0 100 200 300 400

Concentration (g/kg)
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8.2.3 Subsequent Stages Figure 8.9 Conditional densities

of y for 10 values of {x1, xgs, T4 }
Subsequent stages evolve very much like Stage 2 from
Stage 1. The candidate list” from Stageh consists of
subsetsS” of h inputs. Each subset is sampled according
to an LHS of size 4 to generate the 4 sifes, v2, v3, v4 }.
The design matrix at sité is

After the 16th largest?Z, inputs other than those in
S% ={1,24,63,68,69,84} appear, and so the top 20 are
not all the possible triples frons®.

v @ Dyg One of the top input subsets{$, 68, 69}. The conditional
' (% prediction densities in Figure 8.9 show that the subset

meaning that the base case design is modified by replacingsigniﬁcamly reduces th_e_variability ip as indicgted
the original values for the subsgt with the site values n th? talls_ Of_ the_ de_nsm_es when compared with the
v:. Other computations proceed as in Stage 2, except marginal distribution in Figure 8.2. The complementary

that the previously selected candidate is a multiple input c_on_d|t|0nal predl_ctlo_n densities in F'gl_”e 8.10 look very.
subset rather than just a single input, although it is treated similar to those in Figure 8.9, suggestlng that the analysis
logically as an input variable. may be about halfway to completion.

Ordered values of? for Stage 3 are presented in Figure The sequential screening procedure terminated with the
8.8. A somewhat arbitrary cutoff at 16 triples is selected Selection of a single subset of 11 of the 84 inputs, which
in the figure. Of interest is that all of the triples except for causes the long, heavy tail of the prediction distribution.

one come from the 6-subsst = {1, 24,63, 68,69, 84},

and that all six inputs in the top triples appearG.
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Figure 8.10 Conditional densities ofy for
10 values of{xq,- -, @g7, 270, -, ¥aa}
8.3 Validation

The purpose of validation is to provide confirmation
that subsets identified as important do indeed control
or explain prediction uncertainty. In the application,
prediction variance was the criterion for screening, and
so reduction in prediction variance by important subsets,
as measured by the VCE, is guaranteed. Nevertheless,
confirmation through examination of conditional prediction
densities is required. Had the screening criterion been
partial correlation, for example, reduction in prediction
variance would not have been as obvious. Plots of
conditional densities for smaller input subsets have
already appeared. Examination of the effect of the final,
11-input subset follows.

Ten conditional prediction densities corresponding to 10
values for the subset'' = {1,24,35,48,54,63,67, 68,

69, 83,84} are given in Figure 8.11. For each of the
10 densities, the effective range gnis about 100. The
marginal prediction density appears in the figure for
reference. Relative to it, controlling’' essentially
controls y.

The residual variability which causes the spread in each
of the 10 densities is due to the remaining 73 inputs.
Figure 8.12 shows that for each of 10 sample values
of the 73 inputs, the variability iy due to.S'' looks
essentially like the prediction distribution. Thus, the
objective of identifying a (small) subset of the inputs that
essentially accounts for the uncertaintyzjris satisfied

in S''. The residual uncertainty of 100 or so is not
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Figure 8.12 Conditional densities ofy for
10 values of the less important inputs

significant, in this application, relative to the full, free
range of 7000. However, the analysis could continue with
the identification of additional inputs which would reduce
the range iny even more.

As a final diagnostic aid, values of the square root of the
residual variance (the residual standard deviation) from
the candidate subsets selected in each of the 11 stages
are presented in Figures 8.13 and 8.14. The plots point
out two things. First of all, prediction variance is not
substantially reduced beyond that achieved by the best
subsets of size 4 and 5. Second, the standard deviation
from rank data decreases approximately linearly with size
of the best subset until it reaches its theoretical minimum
indicated by the horizontal line.
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9 ANALYSIS APPLICATION II

The model used in this application is MELCOR Accident distributions defined on input ranges are used. Joint
Consequence Code System (MACCS), described in Heltonprobability distributions or sample correlations are used

et al. (1992). The purpose of MACCS is to simulate the for subsets of inputs that can not be treated reasonably as
impact of severe accidents at nuclear power plants on thestatistically independent. For many more details on this
surrounding environment. In any particular application  part of the analysis process see Helton et al. (1992).

of MACCS there are likely to be many possible inputs
and outputs of interest. For this application, attention
focuses on 3 outputs and 36 inputs. The objective is
to determine a subset of the 36 model inputs that is
dominant, or important, in the sense that they are the
principal contributors to prediction uncertainty. The
analysis follows McKay and Beckman (1994a).

A necessary input to MACCS is weather condition.
Because weather is a random phenomenon, MACCS
can be thought of as a stochastic model when weather
is a sampled input. To account for the stochastic
variability due to weather, MACCS computes as outputs
three complementary cumulative distribution functions
(CCDFs) corresponding to Early Fatalities (EF), Total
Cancer Fatalities (CF), and Population Dose (PD). The
CCDFs are induced by treating weather conditions at the
run, therefore a sequential analysis based on selection time of the accident as a random phenomenon. Tables
of inputs one at a time is replaced by the modified of weather parameters (1 year of hourly readings of
approach where several inputs are selected at each stagewind speed, wind direction, atmospheric stability, and
Secondly, there are three model outputs rather than just precipitation) are sampled repeatedly during the MACCS

This application differs from the first (Section 8) in
three ways. First of all, MACCS takes much longer to

one. Finally, the outputs are vector valued rather than
simple scalars. The predictioy(¢) is given for discrete
values oft € {t; <ty <.--<t,}. Therefore, the
notationy means the vector of output values

y=(y(t1), ylta), - y(tm)) .

9.1 Problem Definition

MACCS calculates consequences of a reactor accident at
a nuclear power station whose characteristics and those

of the surrounding environment are defined by inputs.
Because the purpose of this section is to demonstrate
methods, the inputs are identified only by number. The
names of the MACCS input variables are given in the

MACCS User’s Guide (Chanin et al., 1990) and listed in

Appendix B. The 36 inputs selected for study are only

run to produce, in effect, a Monte Carlo estimate of the
CCDF, denoted by(?). Therefore, the model “prediction”
corresponding to Early Fatalities is

y(t) = EF
= Pr{Number of Early Fatalities- ¢}
fort =1, <ty <---<tp,.
Strictly speaking, for each sdfty,ts, -+, %}, the
set{y(t1), y(t2), - -, y(tm)} has a joint distribution.
However, it is sufficient for the analysis to examine the
distributions ofy(t) for eacht separately. For the sake of

discussion, the actual values bhave been replaced by
the integers 1, 2, 3, and so forth in what follows.

9.1.1 Base Case Sample

The base case sample is an rLHS with= 10 replicates
of an LHS of sizen = 50. Then = 50 size was used

some of the 67 used for MACCS input. Therefore, their _ )
input numbers lie in the range from 1 and 67. The outputs because of a code_ requirement for generating correlated
selected for examination are Early Fatalities (the number Samples, as described by Iman and Conover (1982). The
of fatalities within 1 year of the accident), Total Cancer " = 10 replicates is a somewnhat arbitrary number that
Fatalities, and Population Dose. MACCS is composed could have been estimated by preliminary analyses. It
of submodels for source term, plume rise, atmospheric took about 12 hours to_make 500 MACCS runs. Results
transport, dry deposition, wet deposition, evacuation, food for EF are presented first.

chain transport, and dosimetry and health effects. Analysts

determined plausible ranges of uncertainty for the inputs 9.1.2 Prediction Distribution

from the literature, experimental results, and submodel

considerations. Because of the preliminary nature of this Each of the three outputs, EF, CF, and PD, actually has
particular analysis, uniform and loguniform probability 81 prediction densities corresponding to the 81 values
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of {. Rather than calculating formal density estimates,
which would be somewhat difficult to interpret even as
a 3-dimensional plot, the prediction variability of the
outputs is presented informally in a plot of the actual
output calculations from the first replicate of the base
case sample. The data constitute a full LHS, and so
give a representative sample of model predictions. The
representative data for EF in Figure 9.1 are 50 CCDFs
for ¢ from 1 to 50. The traces indicate regions of higher
and lower concentration of CCDFs.

1.0
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v

0.4

0.2

0.0

Figure 9.1 Representativey(t) for EF

The representative data for CF in Figure 9.2 are 50
CCDFs fort from 40 to 81. For values of less than 40,
CF and PD are both constant at 1. The traces indicate
two bands of CCDFs. The lower band contains about
20% of the data.
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Figure 9.2 Representativey(t) for CF

The representative data for PD in Figure 9.3 are 50
CCDFs fort from 40 to 50. The traces show a relatively
uniform concentration of CCDFs except for one high
and one low CCDF.
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Figure 9.3 Representativey(t) for PD
9.2 Sequential Screening Procedure

The selection of important inputs in this application differs
from that in the first application for two reasons. First
of all, there are three model outputs rather than one.
Ultimately, each output is analyzed separately, although
alternative approaches might have been taken. Second,
each output is a vector of values rather than a simple
scalar. Thus, calculations of statistics and statements
about importance of inputs with respect to an output
actually refer to the several “outputs” in the vector of
output values.

9.2.1 Stage 1 for All Outputs

The first step in identification of important inputs is

the calculation ofR?(¢) for each input. TheR?(¢) are
computed with the base case sample data and are plotted
in Figures 9.4-9.6. Rank-transformegeralues are used.

The standard deviation of the full base case sample, the
first 50 values of which appear in Figure 9.1, is plotted as

R-squared
0.3 0.4
|
0.6 0.8 1.0

0.4

Scaled Standard Deviation

0.1
0.2

0.0

Figure 9.4 The R*(t) for 36 inputs for EF



the heavy curve ranging between 0 and 1 and indicated
on the right-hand axis. The standard deviation has been
normalized to a maximum value of 1, which occurs in
Figure 9.4 at = 1. The importance of inputs as indicated
by their B*(¢) is to be viewed relative to the size of

the standard deviation. When the standard deviation is
small, as it is fort > 70 or so, importance of inputs

is not particularly relevant. This point is seen to be
more meaningful for the smaller values bin Figure

9.5. Finally, the horizontal line extending from 40 to 81
corresponds to the 95% critical value f& and is used

as a reference point for preliminary selection of important
inputs. At the first stage, 10 inputs are identified as
important: numbers 27, 30, 31, 33, 38, 40, 42, 50, 59,
and 65. It is apparent that importance of inputs depends
of the value oft. The choices made represent inputs that
appear important for some values ©of

1.0

0.8

0.6

R-squared
0.05 0.10 0.15 0.20 0.25 0.30

0.4
Scaled Standard Deviation

0.2

0.0
0.0

Figure 9.5 The R*(¢) for 36 inputs for CF

Figure 9.5 gives??(¢) and standard deviation plots for CF.
The figure indicates the range of maximum variability for
CF—suggested in Figure 9.2—correspondsg tmetween

50 and 75. Within that range, 3 inputs stand out as
important. In all, 8 inputs were identified as important to

CF in Stage 1: numbers 30, 31, 33, 35, 47, 48, 59, and 65.

Figure 9.6 shows the similarity between PD and CF. This
figure, however, contains an example where an input is
indicated as important by2? for ¢ between 40 and 50

but not as much so, practically speaking, because of the
smaller variability in the values of PD, as indicated by
the standard deviation curve. Eight inputs are selected
as important for PD: numbers 28, 30, 31, 33, 34, 35,
47, and 48.

In the next stage of screening, previously selected inputs
are fixed at their median values and the importance of
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Figure 9.6 The R*(t) for 36 inputs for PD

the remaining inputs is assessed. However, the strategy
to follow with three outputs and three different candidate
subsets for Stage 1 is not apparent. In fact, different
models and analyses require different strategies. The input
subsets in Table 9.1 suggest three possible alternatives.
First, only the common inputs, 30, 31, and 33, might

be fixed. This strategy might work if those inputs were
clearly dominant for each output, which is not the case

in this application. Second, all 15 inputs might be fixed
for the next stage. The problem with that strategy for
CF, for example, is that the importance of inputs 38, 40,
42, and others, over and above that of those selected by
their R?-values, will not be known. As a result, the final
set of choices for important inputs is likely to be larger
than it need be. The final strategy is to proceed with
three separate analyses, one for each output. This strategy
suffers from the criticism of the second strategy when
applied to each value éfand requires a substantial number
of computer runs. However, it is a reasonable approach
which will provide useful and accurate information.

9.2.2 Subsequent Stages for EF

When the 10 inputs selected for EF, indicated in Table 9.1,
are fixed at their median values, prediction uncertainty
is reduced. The first 50 runs for the Stage 2 sample are
shown in Figure 9.7. The reduction in variability due

to fixing the 10 inputs is apparent by comparing Figure
9.7 with Figure 9.1.

The sample for Stage 2 is analyzed for importance just as
that from the first stage except that 10 inputs are at fixed
values. The Stage 2 for EF sample of input values is the
one from the first stage with the values for the 10 selected
inputs replaced by their median values. TRé&-values
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Table 9.1 Candidate inputs for EF, CF, and PD

Input # EF CF PD
30 + + +
31 + + +
33 + + +
59 + +
65 + +
35 + +
47 + +
48 + +
38 +
40 +
42 +
50 +
27 +
28 +
34 +

1.0

y(t)
0.6
\

0.4

0.2

0.0
I

Figure 9.7 Representativey(t)
for EF with 10 inputs fixed

computed for the remaining 26 inputs could be estimates
of partial correlation ratios except that only one site for the
previously selected 10 inputs was used. Rievalues are
properly termed conditional and plotted in Figure 9.8. The
scale of the standard deviation is still the maximum from
Stage 1. Thus, it is seen that the maximum variability
has been reduced by about 40%. Also, there is a single
dominant input as indicated b§? in a region of lower
variability in EF, for0 < ¢ < 20. Five additional inputs
are indicated in Stage 2: 29, 43, 47, 49, and 62.
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Figure 9.8 Conditional R?(t) for 26
inputs for EF with 10 inputs fixed

with 15 inputs set to their medians. The first 50 runs for
the resulting EF are given in Figure 9.9. The additional
reduction in variability, as compared with Figure 9.1,

is significant and may be sufficient to terminate the
designation of important inputs.
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Figure 9.9 Representativey(t)
for EF with 15 inputs fixed

Conditional % are computed for the remaining 21 inputs
and plotted in Figure 9.10. The scaled standard deviation
shows that variability is reduced to 15% of its maximum
in Stage 1. The behavior of the plots results from the
tight spread in the data and the use of the rank transform.
Thus, it is seen that the maximum variability is reduced
by about 40%. The additional important inputs indicated
in Stage 3 are 25, 45, and 48.

When the selected inputs are fixed at their medians, the
total of 18 of the 36 inputs fixed reduces the variability in
EF to that given in Figure 9.11. Sequential screening for
EF is halted at this stage, to be followed by the validation
phase. It is important to remember that as inputs were

For the next stage, the base case input sample is used buselected, they were fixed at their median value. Therefore,
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Figure 9.10 Conditional R*(¢) for 21
inputs for EF with 15 inputs fixed

the behavior of the EF for other fixed values is unknown.
Additional fixed values (sites) are investigated as part
of validation.
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Figure 9.11 Representativey(t)
for EF with 18 inputs fixed

9.3 Validation for EF

9. Analysis Application I

investigated for validation and not meant to imply that
five is a sufficient number. Unfortunately, no hard and
fast rules exist for a sufficient number of validation runs
for a general model, so judgement must be exercised.
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Figure 9.12 Five sets of representative
y(t) for EF with important inputs fixed

The spread in each band is due to the input$af The
displacements of the bands is due to the important inputs
of S,.. For the application at hand, the figure suggests
that the important inputs have been adequately identified.
However, in any particular analysis an adequate sample
of validation runs must be closely investigated. In this
validation procedure, the values 6f are the same 50

for each band; only the values 6f change from band

to band. Thus, intrinsic differences in band patterns are
due to interaction between the values %f and S%.
Investigation of such interactions is often profitable.

9.4 Validation for EF of Selections by
Partial Rank Correlation Coefficient

The same sample data used in the preceding analyses can
be used to compute partial rank correlation coefficients

In the screening portion of the analysis, the set of important (PRCCs). Although the PRCC is an established indicator

inputs for EF was constructed in three stages. The 18
inputs chosen aré,, = {25,27, 29,30, 31, 33, 38,40, 42,
43,45,47,48,49,50,59,62,65}. The objective of the
validation portion of the analysis is to determine (1) how
much S,, controls variability in EF whert,, is fixed and
the other inputs vary, and (2) how much the variability
caused by the other inputs obscures the changes in EF
caused bys,., and (3) how well the variability due ts,
mimics the total prediction uncertainty of EF.

Figure 9.12 addresses points (1) and (2). EF from five

samples of 50 runs each are plotted in the figure. They
are presented as examples of the data that must be

47

of importance, it relies on assumptions of linearity or
monotonicity for it to be effective. The PRCCs are
computed for two data sets: the first 50-run replicate in
the base case sample and the entire 500-run base case
sample. The first 50-run replicate represents a sample
size typical of common usage. By using the full 500-run
base case sample, the PRCC is given a more even footing
with variance ratios. For comparisons, the inputs selected
are given in Table 9.2.

Figures 9.13 and 9.14 correspond to Figure 9.11 and

are presented for comparison of the relative importance
of the inputs selected with PRCCs. The widths of the
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Table 9.2 Inputs selected for EF with
variance ratios, PRCCs from sample size
500, and PRCCs from sample size 50

Variance PRCC-500 PRCC-50

25

27 27 27
29

30 30 30
31 31 31
33 33 33
38

40 40

42 42 42
43 43

45

47 47 47
48 48

49 49

50 50

59 59 59
62

65 65

bands reflect the importance of the inputst selected

and, hence, the adequacy of the selection procedure.
Figure 9.13 shows the significant variability not accounted
for by the seven inputs selected with PRCCs in the
sample of size 50 (PRCC-50). Figure 9.14 shows that the
additional six inputs selected with PRCCs in the larger,
500-run sample significantly reduce variability in EF.
Whether the remaining variability is significant depends
on interpretation. However, a visually substantial amount
remains as compared with that in Figure 9.11.

This simple comparative study points out the shortcomings
of exclusive use of the PRCC—particularly without
validation—as an indicator of importance. However,

the PRCC is a valuable adjunct to variance ratios for
screening for important inputs. Its use in this manner

is recommended. (A simple example demonstrating a
complete breakdown of the correlation coefficient to
indicate importance is given in Appendix C.)
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Figure 9.13 Representativey(t) for EF
with 7 inputs from PRCC-50 fixed
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Figure 9.14 Representativey(t) for EF
with 13 inputs from PRCC-500 fixed

9.5 Subsequent Stages and
Validation for CF

The eight inputs initially selected for CF, indicated in

Table 9.1, have values fixed at their medians for the

second stage. The first 50 runs for the second stage
sample are shown in Figure 9.15.
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Figure 9.15 Representative
y(t) for CF with 8 inputs fixed



The figure displays an interesting pattern with 2 of the
50 runs falling noticeable to the left of the remaining
runs. Further investigation of the pattern is not discussed
in preference to continuing with variable selection.
Conditional * are computed for the remaining 28 inputs
and plotted in Figure 9.16. The scaled standard deviation
shows that variability is reduced to 60% at its maximum
in Stage 1. The six additional important inputs indicated
in Stage 2 are 29, 38, 40, 41, 51, and 60.
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Figure 9.16 Conditional R*(¢) for 28
inputs for CF with 8 inputs fixed

When the 14 inputs selected are fixed at their medians,
the variability of CF is very small, as shown in Figure
9.17. The remaining variability is virtually eliminated by
the fixing inputs 27, 42, and 50. These last three inputs
are noted but not added to the list of important inputs
for CF because the additional reduction in variability is
not of practical significance.
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Figure 9.17 Representativey(t)
for CF with 14 inputs fixed
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The final subseb, of important inputs for CF contains 14
inputs. For a sample of five sites fof,, LHS samples of
size 50 in the remaining 22 inputs produce the five bands
in Figure 9.18. The figure shows how little variability is
caused by the 22 unimportant inputs.
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Figure 9.18 Five sets of representative
y(t) for CF with important inputs fixed

On the other hand, the variability attributable to the 14
important inputs is expected to be, approximately, the
same as the complete prediction uncertainty for CF. A
plot similar to Figure 9.18 but with bands corresponding
to fixed values of the unimportant input§ demonstrates
the expectation. Because the bands overlap so completely,
band (sample) means and standard deviations are plotted
as functions oft in Figure 9.19 as a summary of the
bands of 50 sample curves. Ten data sets instead of five
are represented in the figure. Together, Figures 9.18 and
9.19 suggest that no important inputs were overlooked in
the sequential screening steps.
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Figure 9.19 Means and standard deviations
for CF with important inputs varying
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9.6 Comparison of Important
Inputs for EF, CF, and PD

Table 9.3 Important inputs and stages

when selected for EF, CF, and PD

Input #

EF

CF

PD

Important inputs independently selected in the three stages
of sequential screening for each output are given in Table
9.3. Simultaneous screening can mask important inputs.
Had screening for the outputs been done in a simultaneous
fashion, all inputs indicated by 1 in the table would have
been fixed at Stage 2. As a result, the importance of input
47 for EF would have been masked by its selection as
important for CF and PD in Stage 1. This example points
out a drawback of simultaneous analysis of outputs.

29
30
31
33
38
40
47
48
59
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10 SUBMODEL UNCERTAINTY

This section discusses several techniques to use in
evaluating structural uncertainty for submodels. Although

the two special cases. Namely, the effect of different
submodel calculations—with alternative submodels

easier to approach than general structural uncertainty, theor perturbations—can be evaluated in changes to the

area is in its early stages of development. Therefore,

prediction distribution arising from input uncertainty.

the contributions below address special cases and are to Consideration is how given to the two cases: the case of

be viewed as tentative. The final topic of the section
concerns how one might choose between input and
structural uncertainty when comparing model prediction
with validation data.

Submodel uncertainty is examined as a special case
of structural uncertainty following McKay (1993). A
submodel is a meaningful intermediate calculation within
the context of the entire model. That i§;) is a submodel
when it is a function of the inputs and(z) = m* (z, s(x))

is a nontrivial function ofs(x). If s(-) is a function of a
subset of the inputs C # = {u, v}, then the calculation
of the output is described as in Figure 10.1. The notation
used is thats(-) refers to the structure of the submodel
and thats(v) refers to its calculated output value as a
function of v.

Inputsx

Output
Model except
for submodel "

Intermediate
calculation

Submodel

Figure 10.1 Calculation via a submodel

competing submodels and the case of perturbation of the
calculation of a single submodel.

10.1 Competing Submodels

For the more simple case of competing submodels,

an obvious strategy uses the differences within the

set of prediction probability distributiong, from

input uncertainty corresponding to each submodel
individually. If the probability distribution functions

do not differ significantly, submodel choice does not
have a substantial impact on prediction uncertainty. The
guestion here is one of practical significance as opposed
to statistical significance, although there may be a place
for a significance test. In other words, a subjective
determination has to be made as to the importance of
observed differences among the probability functions
relative to the spread of predicted values described

by the individual distributions. Specifics regarding
methods for comparisons will have to be investigated.
Although there do not seem to be any simple, uniquely
applicable measures, possibilities include relative entropy
(or Kullback-Leibler distance) as discussed by Kullback
(1968) and Cover and Thomas (1992) and measures like
Hellinger distance and Matusita’s distance (see Kotz and
Johnson, 1982).

If subjective probabilities are associated with the choices
of submodels, two additional options are available

for assessing competing submodels. First, the set of
prediction probability functiong, due to the submodels

Submodel uncertainty is discussed in two cases. The firstcould be viewed as the set of conditional distribution

supposes there are several known submodels for which
relative effects on uncertainty in predictignare desired.

functions from which can be determined the unconditional
distribution of y that incorporates submodel uncertainty.

The approach in this case compares the separate analyse$his distribution might be used by decision-makers as a
where each submodel is used. The second case supposesummary of prediction uncertainty from the competing
there are no known alternative submodels and assesses models. Second, an indicator input variable which selects

importance of perturbation of the submodel calculation
relative to importance of model inputs.

There is an important difference between structural
uncertainty in general and submodel uncertainty in
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from among the competing submodels could be analyzed
together with the other inputs as part of input uncertainty.
In both options, choice of input distribution function

(f») might depend on the particular submodel being
used. Also, relative advantages and disadvantages of
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10. Submodel Uncertainty

the approaches will depend on the particular instance of
model and submodels.

10.2 Perturbation Method
for a Single Submodel

In the case of a single submodel, (random) perturbation
of its calculation artificially creates the effect of using
different submodels. In paralleling the use of a selection
indicator variable, a perturbation input variable that
varies according to a prescribed probability distribution
is used to control the perturbation of the submodel
calculation. A perturbed calculation represents, in a sense,
an unknown competing model calculatioi{v). Two
possible representations féfv) are an absolute, additive
perturbation and, under restrictions, a proportional,
multiplicative one as indicated in Equation 10-1.

(10-1)

Proportional limits like a factor of 2, indicating
multiplications by 2 and 1/2, and limits like plus or
minus 10% are familiar. So, to simplify discussion and to
make computing more convenient, it is assumed ¥al
can be constructed as a fractionsgf) within prescribed,
multiplicative limits. Of course, the assumption fails when
s(v) is 0, and it might be better to use the additive form
when values ofs(v) can be both positive and negative.
Whether the additive or multiplicative form is used, key
issues are the dimensionality sfv) and the dependence
of 6 onwv. (Whené is used as a multiplier, it is sometimes
referred to as a “dial.”)

10.2.1 Scalar Submodel Output

The first case is that of scalar submodel output, and
supposes that absolute limifs< s(v) < U on its value
can be assigned. The perturbed submodel calculation
must be restricted to lie within the limits. When a
proportional perturbation of the submodel calculation
provides adequate variation for the purpose of evaluating
submodel uncertainty, a perturbation input variable is used
to multiply the submodel calculation. For example, letting
the range of the perturbation variabiebe (1/XA, A) or
(1—AX,14 A) whenX < 1, the submodel calculatios{v)
could be replaced by(v) = é x s(v), whereé is taken to
have a uniform distribution on the interval or a loguniform
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distribution on the interval with logarithmic limits. In
either case, limits of variation are defined in terms\of

Evaluation of submodel uncertainty for a scalar output
can be done for selected values of the rangeFor any
suitable importance measure, the importance(ef can

be assessed as the (input) importance of the perturbation
factor ¢ for fixed A. Then, subjective determination of the
effect of uncertainty in the submodel can be examined as a
function of the range of perturbatioh In particular, one
might identify the value of\ below which uncertainty in

the submodel is unimportant relative to input uncertainty.

There is a very special case where input$o the
submodel calculation are restricted to that calculation,
and the model can be written as(u, v) = m*(u, s(v)).
For this case, the dashed line in Figure 10.1 fromihe
circle is not present. The analysis can be simplified by
replacing the submodel calculatiefw) by sq, an ordinary
input variable. The input, would be defined on the
interval (L, U). It is not clear what a suitable (sampling)
probability distribution fors, would be. The actual
distribution of s(v) induced by the probability distribution
for v might indicate a course of action. Allowing that
a distribution can be developed, submodel uncertainty
proceeds as a study ef as a part of input uncertainty
without using the submodel calculations at all.

10.2.2 Vector Submodel Output

When the submodel has multiple output calculaticiis)

is a vector whose components can be combined with
the true inputs and treated as a subset of inputs whose
importance is to be assessed. The situation is complicated
because it is likely to be unreasonable to let the range
of each component of(v) vary independently to any
significant degree. An example of such an output is the
wind field calculated by an atmospheric dispersion model.
As a first approximation, a bounding box is defined
centered ak, whose proportions (shape) are determined
by a fixed vectors, and whose size is determined by

a scale parameter. The shape of the box defines the
allowed proportional variation in the componentss6f).
Importance ofs(v) is then assessed as a function of
the scale\, of the box which measures the amount of
perturbation.

If there is interaction among components s§t'), the
direction of the vector, becomes significant to the
analysis. While it may be informative to examine
importance as a function of the direction gfv), high



dimensionality ofs(v) may make complete analysis
difficult. A possible approach is to treat the direction
cosines ofé; as inputs and to perform an analysis in the
spirit of principal components.

10.2.3 Nonseparable Inputs

In previous discussionsi(v) or its components could

be viewed like model inputs that were independent

of the true inputs to the model. The reason was that
dependency ofn(-) on v was throughs(-). Besides
examining alternative submodels as arbitrary functions
3(+), they might be examined through and as probability
functions defined on the space fv), the submodel
output. These distributions would be independent of the
distribution of the true model inputs. When input to

the submodel is nonseparable and appears elsewhere in
the model calculation, assessment of effects of submodel
perturbation becomes difficult because the probability
distribution of submodel output will have to be properly
treated as a function efexcept in extraordinary situations.

10.3 Components of Error

It is important to be able to decide between input error and
structural inadequacy when model prediction and external
validation information do not agree. Relevant external
information might be available and include experimental
data, observational data, or expert opinion.

The first case is for a single model and input distribution.
“Best estimate” input values* and “best” modebn* ()
predict the data valué. The best prediction is

y* — m* (I*) ;
for which the absolute value of prediction error is
Eg = |y>.< — 9| .

In a very formal manner, an allocation process between
inputs and model structure might begin with

(e, m) = |m(x) — 0]

as the difference for unspecific inputand modelm(-).
For the model of interestn* (),

Ve(m™;0) ={x|e(m”,z) <ep}

denotes the set of input values for which the difference
between prediction and data is less that the observed
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differencee,. The probability content of the set undgr
is denoted byp,. That is,p, is the probability content
of the set of inputs producing a difference between
prediction and data less thap when f,. is the likelihood
for “correct” input values. Similarly, for inputs fixed at,

My (x%8)={m|e(m,a") <ep}

denotes the set of models values for which the difference
between prediction and data is less that the observed
differencesy. The probability content of the set under
¢m IS denoted byp,,. How one might preceded from this
point is the subject of further research.

Two other cases are now presented. They pertain to
choosing between two alternative models and choosing
between two alternative input distributions. The situations
are similar to one of competing models discussed in
Section 10.1. In the first case, the objective is to decide
which of the two models is more appropriate, relative to
data, under the assumption that the correct distribution of
input valuesf, is known. Figure 10.2 describes the case
for a scalar input and output.

y=mk Model 1

Model 2

Data value

—
Inferred
X

i
I
|
I
i
}‘/\
|
I
I
I
|
I
I
|

" Distribution ofx

Figure 10.2 Choosing between two models

A strategy to select the model that makes the inferred
z-value more likely shows, from the figure, that Model
1 associates am-value “more likely” relative to the
observed data than does Model 2. More likely is in the
sense that for Model 1, indicated by a dashed line from
the Model 1 solid line, has a higher likelihood (value of
distribution f,.) than the one for Model 2. Thus, based
on a likelihood argument, the evidence supports Model
1 over Model 2.

In the second case, the objective is to decide which of
the two input distributions is more appropriate under the
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assumption that the correct model is known. Figure 10.3 y=me Model

describes the situation. In this case, Distribution 1 is
selected over Distribution 2 because it assigns a higher
likelihood to the inferredz-value that predicts the data.

Data value

Inferredx

¥

Distribution 1 ~

;

I

I

I

I

I

I

I

I

I

|

I

I

I

N

N

3

I

- ,,} Distribution 2
I

Figure 10.3 Choosing between two distributions
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11 CONCLUSIONS

A general mathematical foundation for uncertainty analysis including correlation ratios and partial correlation ratios.
is presented. The foundation provides a reasonable and The screening process is properly checked through an

effective basis to relate prediction uncertainty and
importance of inputs through the notion of statistical
dependence. As one way of comparing families of
conditional prediction distributions, variance ratios
arise naturally as importance indicators. Moreover,
variance ratios derive their effectiveness directly from
consideration of the prediction probability distribution
without regard to any specific form of the mode-).

In particular, assumptions of linearity or monotonicity

usually accompanying regression-based methods are not

necessary.

Although variance is generally preferred over regression-
based indicators in evaluation of prediction uncertainty,
regression-based methods have served well in many

applications. In fact, the auxiliary use of regression-based
indicators along with variance-based ones is encouraged.

Estimation for variance-based importance indicators
requires special sampling plans. Replicated LHS, as
presented in the report, is a viable sampling plan for

this purpose. Nevertheless, variance-based methods can

require very many computer runs as compared with the
number needed for regression-based methods, which
require fewer computer runs because of assumptions
they make about the form of the model. In cases where
variance estimates are unstable because of necessarily
small samples, the auxiliary use of regression-based
indicators is encouraged.

Importance of individual inputs and subsets of inputs can

be determined through sequential screening procedures
where importance is indicated with variance ratios,
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independent validation step. Validation exercises should
be a regular part of an uncertainty study to confirm input
selection and to quantify various aspects of prediction
uncertainty as related to important inputs.

The report illustrates by way of the analysis applications
several important considerations for uncertainty studies.
Techniques used in the applications provide useful
guidance but will not be applicable in all cases. In
general, conditional prediction uncertainty as described
by estimated probability density functions or plots of
representative values should be examined during input
screening to reveal progress of the method and unusual
behaviors. Such displays can reveal extreme predictions
whose excessive effects on importance indicators is
lessened through the use of the rank transformation.
When analyzing several model outputs simultaneously
in sequential screening, the analyst needs to be alert for
possible masking of an input’s importance for certain of
the outputs due to its selection as important for other
outputs.

Finally, the analysis applications pointed out that rank
correlation coefficients, both ordinary and partial, can be
effective auxiliary indicators of important inputs when
used with variance ratios. However, as demonstrated
in one of the applications, on their own they can fail

to detect important inputs. As a protection, validation
of inputs selected as important is effective to confirm
input selections, to display the full nature of importance
reflected in prediction distributions, and to discover the
existence of any undetected important inputs.
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Appendix A: ADDITIONAL TECHNICAL CONSIDERATIONS

A.1 A General Variance Decomposition

A variance decomposition used by Cox (1982), attributed
to Baybutt and Kurth (1978), consists of a sum of terms
depending on subsets of inputs of size 1, 2, and so forth.

m

VIYI=D V4 Vg + > Vi

) 1<j i<j<k
+ Vs
V”kIV[Z”k], 1<i<j<k<---<m

Y =3 Z | X, Xj|, 1<k <j<m

i=1
Y—ZZ7 — Zan |Xk;XjJXI])
i=1 n<p

1 <k<j<l<m,andso forth

Iy =F

Zkﬂ =F

The first summation in the decomposition is of VCEs.

Subsequent terms involve variances of prediction residuals.

The expansion looks very promising for importance
indication. However, it requires that the inputs be

and is a function ok, . Its expected value is

o (o o

which is a measure of the differences among the family
of conditional density functiong f,,. }. Thus,I might
be used as an importance indicator fr.

A.3 Derivation of Equation
5-6 and Motivation for the
Partial Correlation Ratio

For the subse{z, S, }

Viyl = Vo5, [E(y [ {z,5:})]

+ Ep 5. (VIy [ {2, 5:}]) - (A-1)

Conditioned onS,. (e.g., usingf,s, ), it is seen that

VIy [ Se] = Vos, [E(y | {2, 5:}) | 5]

statistically independent. Moreover, there are an excessweEXpeCtation overs, produces

number of terms involved, even for a moderate number
of inputs.

A.2 Entropy

Variance, information and entropy are related concepts. In

particular, relative entropy or Kullback-Leibler distance
(Kullback, 1968) could play an important role as an
indicator of importance for prediction uncertainty. A
helpful discussion of entropy can be found in the
Encyclopedia of Statistical Sciencésotz and Johnson,
1982).

The entropyof the density functionf, is defined by
H = —E(log(fy))
=~ [ oatf, )£, )y

The relative entropyor Kullback-Leibler distanceof
density f, ;. relative to f, is defined by

- [roa( 557

1(s7)

)ity
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Es,(VIy | Ss]) = Es, (Voys [E(y | {x,5:}) | S»])
+ Em,SI(V[y | {x, ST}]) )

which gives

Eps,(VIy | {z,5:}]) = Es.(V[y | S:])
— Es, (Vois. [E(y [ {#, 9 1) | S]) - (A-2)

Substitution from Equation A-2 for the last term in
Equation A-1 gives

Vigl = VIE(y | {2, 5: )] + E(V]y | S])

= Bs, (Vors. [E(y [ {z, S D [ S:]) . (A-3)

Substitution for the second term on the right in Equation
A-3 with

EWVIy | S:])=Viyl = VIE(y | S:)]
and rearrangement of terms produces Equation 5-6,

VIE(y | {z,5:1)] = VIE(y | 50)]
+EWVIEQ [ {#,5 D 5]
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A.4 A Useful Derivation Technique

The variance of a sampling distribution can be derived Then,
from the expectation of a sum of squares about the sample
mean. Sums of squares also appear in analysis tables like
the ones in Appendices A.5 and A.6. One way to derive

expectations of sums of squares is to use Equation 5-1

as follows. They;; andz; are defined analogously to
those in Appendix A.5. Let

1 1<
_»_——E ; and__——E g .
YiT K — Yik y J],_1 Yi

E('J (¥; —?)2) =~ JV[7;]
= JHVIE®; |2)] + E(V [y | 2])}
= 1{VIBW 2]+ B0y ]}

A.5 One-way Analysis of
Variance Analogy

Let {(z; yjx)|j=1,---,nandk =1,---,r} be sample
values with {y;x, k =1,---,r} independent and
identically distributed as random variables conditioned

on z;, and the{z;, j=1,---,n} independent and
identically distributed. Thez;, j =1,---,n} represent
values of a model input. The {y;, k=1,---,r}

represent the values of the model output for input vaipe
with sampled values of the inputs other thamccounted
for by the indexk. Expected values can be found using
the technique of Appendix A.4.

Source of Variation/df Sum of Squares Approx. E(Sum of Squares)
Total n .
nr—1 SST= 2:1 = (k= 7) nrV[y]
J=1lk=
Betweenr oo
n—1 SsB=r 3 (7, - 7) nrV,[E(y | 2;)] + no?
]:
Within z n o L
n(r—1) SSW= 2:1 2 (yjk - yj) nrE,(Viy| z]) = nra?
Jj= =
R? = SSB/SST
1
R? = <SSB— —SSW) /SST
r
2 1 2
=R’ - ;(1 - R?)
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A.6 Two-way Analysis of
Variance Analogy

Let {(xt;utj)ytjk) |k = 1,"',7“, .7: 1)"')”) and
t=1,---,5} be sample values withu;, j =1,--- n}
independent and identically distributed random variables
conditioned onzy, {y:jx, k=1,---,r} independent

and identically distributed random variables conditioned
on z; andu,;, and {x,, t=1,--- s} independent

Appendix A. Additional Technical Considerations

and identically distributed. Thdz;, t =1, ---,s}
represent values of a model input (subset) The

{w, j=1,---,n} represent values of another model
input © whose probability distribution is conditioned an
Finally, the{y.;x, k = 1,---,r} represent the values of
the model output for input values andwu,; with sampled
values of the inputs other than and v accounted for

by the indexk. Expected values can be found using the
technique of Appendix A.4.

Source of Variation/df Sum of Squares Approx. E(Sum of Squares)

Total s onor , v
snr— 1 SST= 3 50 3 (uk = B) sVl

t=1j=1k=1
Betweenx s . )
s—1 nr Z (yt - y) sanx[E(y | xt)] tore
t=1
Within z s n 7
s(nr—1) SSW= 3 > ¥ (wijk — %)’ snrEy (V[y | #]) = snro”
t=1j=1k=1
Betweenu

- 5 n snrE (V[ E(y | {2, wy; x,
within x SSB=r 3 3 (7, — t>2 (Vay [—1—(57|sz 0 }) | @)
s(n—1) f=1 ;=1 e
Within «

- 5 n v snrk, (E“‘I(V[y | {x,,u,}]))
within > (ytjk - yfj)Q = snro? !
sn(r—1) f=15=1k=1 ¢

partial R? (u; ) = SSB/SSW
partial incrementak” (u; ) = SSB/SST
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Appendix B: INPUTS TO MACCS

The names of the MACCS input variables are given below. A few of the names in the table do match those given in the
MACCS User’'s Guide (Chanin et al., 1990) because a newer version of the code was used in this study.

1 NUMFIN 11 RFP1C4 21 RFP2C6 31 ZSCALE
2 TCFMCU 12 RFP1C5 22 RFP2C7 32 VDEPOS1
3 PLUDUR1 13 RFP1C6 23 RFP2C8 33 VDEPOS2
4 PLUDUR2 14 RFP1C7 24 RFP2C9 34 VDEPOS3
5 PLHEAT1 15 RFP1C8 25 BUILDH 35 CWASH1
6 PLHEAT2 16 RFP1C9 26 BUILDW 36 CWASH2
7 PLHITE1 17 RFP2C2 27 SCLCRW 37 TCORUN
8 RFP1C1 18 RFP2C3 28 SCLADP 38 TDELAY
9 RFP1C2 19 RFP2C4 29 SCLEFP 39 LASEVA
10 RFP1C3 20 RFP2C5 30 YSCALE 40 ESPEED
41 P2DOS1 51 EFFACA2 61 TTOSH2

42 PHS2T2 52 EFFACB2 62 CSFACTS

43 EVFRAC 53 EFFACA3 63 GSHFACS

44 CSFACTE 54 EFFACB3 64 PROTINS

45 CSFACTN 55 EIFACAL 65 EFFTHR1

46 GSHFACE 56 EIFACB1 66 EFFTHR2

47 GSHFACN 57 EIFACA2 67 EITHRE1

48 PROTINN 58 EIFACB2

49 EFFACAL 59 TIMHOT

50 EFFACB1 60 DOSHOT
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Appendix C: BREAKDOWN OF THE CORRELATION COEFFICIENT

The correlation coefficienp is an effective regression- When the inputss; and z, have independent uniform
based indicator of importance under the assumption of an probability distributions on the intervdD, 1), the exact
approximately linear relation between model inpuand values of correlation coefficients and correlation ratios for

output predictiory. When the actual relation is nonlinear, z; andz- can be derived to show the following.
the correlation coefficient can break down as an indicator
of importance. In a simple but realistic example based on '
an event tree calculatiom, can fail to detect importance
while the correlation ratig? functions correctly to indicate
importance. The event tree is indicated in Figure C.1.

Becausey is a nonlinear function of, it is expected
that the correlation coefficient may not adequately
express the importance af . In fact, this example
points out the extreme situation where the covariance
betweenz,; andy is 0. Therefore, although; is
Consequence clearly an important input, the correlation between

y and z; is O:

values

1.5 p1 =0.

»  The correlation ratio for; is given by

4 2
h = 5/9
=2/3-1/9.
L /3-1/
The correlation ratio indicates that accounts for
approximately2/3 of the (prediction) variance af.
2

» The expected consequengeis a linear function
of 5. Therefore, as expected, the correlation ratio
Figure C.1 Simple event tree and the correlation coefficient squared have to be
the same value:
Corresponding to the event tree, the model predictias
the expected consequence which depends on inpuasid 0 = ps = 1/3.
z5. The expected consequence is the sum of the product
of probabilities through the tree times consequence values.The example also points out the nonadditivity of the VCE

It is given by for individual inputs as suggested by the fractibf9 in
the value ofy?. A PVCE calculation for either input
y=—252] + 2 (xy +2) — x5+ 2. shows the additivity described in Equation 5-11.
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